

SPECIFICATION

Part No. : PA.22A

Product Name : **GSM Dielectric PIFA Antenna (DPA™)**

Description : Tri-band - 880~960 MHz, 1710~1990 MHz, 0dB Gain

Size: 29.8mm*6mm*5mm

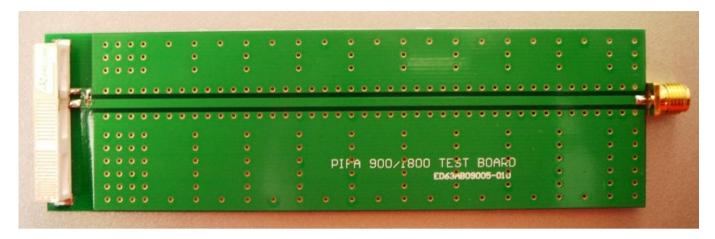
REVISION STATUS

Version	Date	Page	Revision Description	Prepared	Approved
01	Nov 4th 2005	All	New format	TW Product Centre	Ronan Quinlan
02	Jan 16 th 2008	2	Max Power	TW Product Centre	Dermot O'Shea
03	Dec 15th 2008	All	New Format	TW Product Centre	Aine Doyle

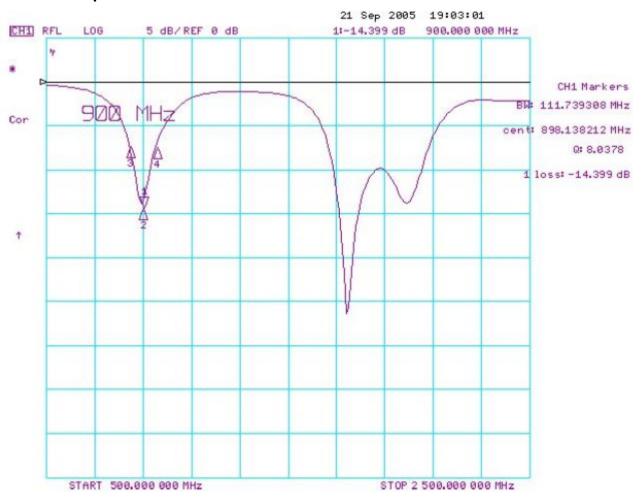
1.0 Scope

This specification is for a Tri-band GSM miniature PIFA (Dielectric Planar inverted-F Type Antenna) (DPA™) Antenna for internal SMT mounting.

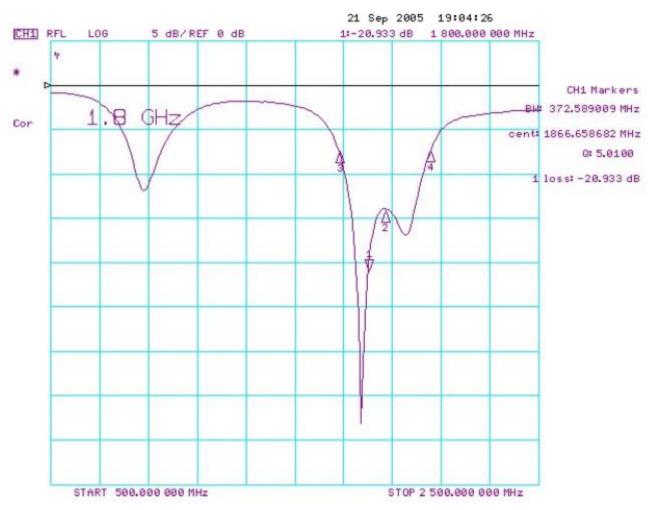
Note: The antenna also shows a response at 850MHz which means the antenna can also be defined on quad-band, depending on the target specification for the device itself.


2.0 Electrical Specifications

The antenna has the electrical characteristics given in Table 1 under the Taoglas standard installation conditions as shown in the Evaluation Board (Figure


No.	Parameter	Specification
1	Frequency	880~960 MHz , 1710~1990 MHz
2	Dimensions	29.8 x 6.0 x 5.0 mm
3	Impedance	50 Ω
4	VSWR	2.5 max (depends on environment)
5	Polarization	Linear
6	Operating Temperature	-40~105°C
7	Termination	Ag (Environmentally Friendly Lead- Free)
8	Max power	2w for average / 5w peak for short

^{*}Data is measured on Taoglas Evaluation Board (reference ground plane) pictured below



2.1 S11 Response Curve

Radiation patterns also available (measured in free space and on evaluation board)
2.2 Gain and Efficiency

GSM900

Frequency		Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
	880.2	-3.65	21.09
TX	890.2	-2.73	26.25
17	902.4	-2.28	31.23
	914.8	-2.04	35.24
RX	925.2	-1.96	37.02
	935.2	-2.54	33.33
	947.4	-2.96	31.17
	959.8	-3.16	29.47

GSM1800

Frequency (MHz)		Peak Gain (dBi)	Efficiency (%)
	1710.2	2.28	60.63
TX	1747.6	2.35	61.53
	1784.8	2.58	60.77
	1805.2	2.32	56.67
RX	1842.6	2.43	56.31
	1879.8	2.59	58.69

GSM1900

Frequency (MHz)		Peak Gain (dBi)	Efficiency (%)
	1850.2	2.48	56.95
TX	1880.0	2.60	58.75
	1909.8	2.12	52.79
	1930.2	2.01	52.02
RX	1960.0	1.31	47.26
	1989.8	0.30	38.62

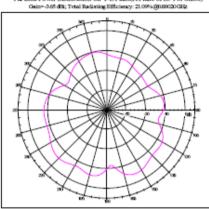
GSM900

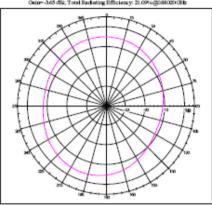
Frequency (GHz)		Plane	Average Gain (dBi)
		XY plane	-7.133
	880.2	YZ plane	-9.766
		XZ plane	-6.101
		XY plane	-5.968
	890.2	YZ plane	-8.845
TX		XZ plane	-5.126
17		XY plane	-4.898
	902.4	YZ plane	-8.892
		XZ plane	-4.350
	914.8	XY plane	-4.077
		YZ plane	-7.477
		XZ plane	-3.865
	925.2	XY plane	-3.599
		YZ plane	-7.202
		XZ plane	-3.732
		XY plane	-3.802
	935.2	YZ plane	-7.648
RX		XZ plane	-4.290
		XY plane	-3.788
	947.4	YZ plane	-7.843
		XZ plane	-4.579
		XY plane	-3.801
	959.8	YZ plane	-7.913
		XZ plane	-5.187

GSM1800

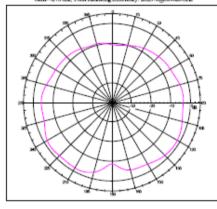
F	requency (GHz)	Plane	Average Gain (dBi)
	1710.2	XY plane	-2.648
		YZ plane	-4.661
		XZ plane	-1.687
		XY plane	-2.529
TX	1747.6	YZ plane	-4.696
		XZ plane	-1.207
		XY plane	-2.685
	1784.8	YZ plane	-4.687
		XZ plane	-0.888
		XY plane	-3.193
	1805.2	YZ plane	-4.911
		XZ plane	-1.105
		XY plane	-3.468
RX	1842.6	YZ plane	-4.753
		XZ plane	-1.145
		XY plane	-3.745
	1879.8	YZ plane	-4.131
		XZ plane	-1.430

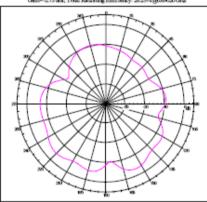
GSM1900

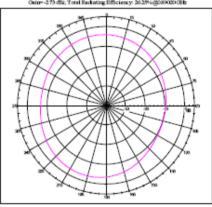

F	requency (GHz)	Plane	Average Gain (dBi)
TX		XY plane	-3.511
	1850.2	YZ plane	-4.649
		XZ plane	-1.147
		XY plane	-3.746
	1880.0	YZ plane	-4.124
		XZ plane	-1.435
		XY plane	-4.683
	1909.8	YZ plane	-4.228
		XZ plane	-2.525
		XY plane	-5.539
	1930.2	YZ plane	-4.270
		XZ plane	-3.257
		XY plane	-6.444
RX	1960.0	YZ plane	-4.441
		XZ plane	-4.126
		XY plane	-8.068
	1989.8	YZ plane	-5.359
		XZ plane	-5.477


GSM900

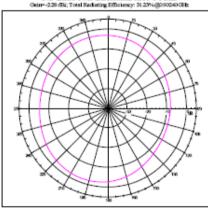
Frequency:880.2 MHz


Far-field Power Distribution on X-Z Hans (E-Flane of L3 Pol Sense) Outre-3-65 dB; Total Radiating Efficiency: 21.09% (§038020 GHz

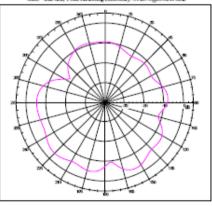

Far-field Power Distribution on X-Y Plane or-345 dB; Total Radiating Efficiency: 21.094(8088020 GBs.

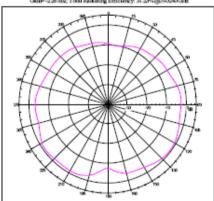

Frequency:890.2 MHz Far-field Power Distribution on No.2 Plane(B-Plane of L3 Pel Strae) Cairr-277-58; Treat Radiating Hill(ciney: 2625%(\$90000000000))

Fas-field Power Distribution on Y-Z-Plane(H-Plane of L3 Pol Sense) Gain--273 dB; Total Padisting Efficiency: 2625%(g089020GB):



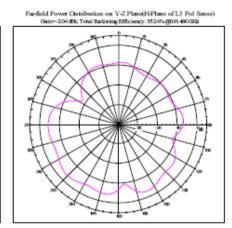
Far-field Power Distribution on X-Y Plane in-273 dBi; Total Radiating Bifficiency: 262594@089020 GBb;

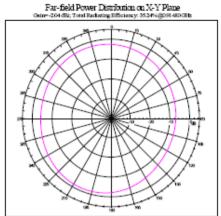


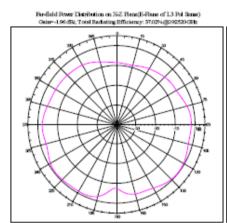

Frequency:902.4MHz

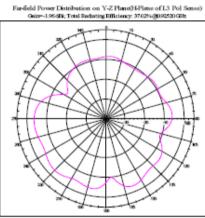
Far-field Power Distribution on X-Y Plane or-220 dB; Total Radiating Rifficiency: N 20%(@090000 GBs.

Fre-field Power Distribution on Y-Z-Plane(H-Plane of L3 Pol Sense) Gain=-228 dB; Total Radisting Efficiency: 31-23%@99240GB;

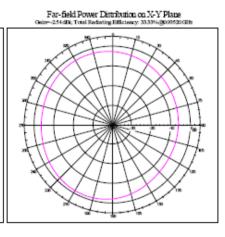


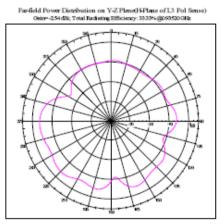



Frequency:914.8MHz


Far-field Roser Distriction on No.7 Hane(B-Flane of L3 Pol Sense)
Geinr-204-fill; Total Rackstrag Rifficiency: 252-F4 (2009) 480-000-

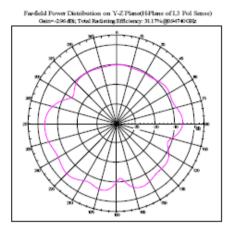
Frequency:925.2MHz

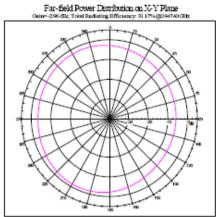


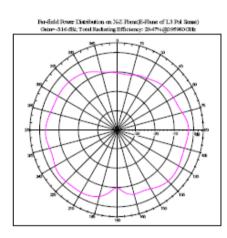


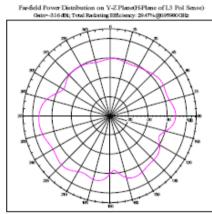
Frequency:935.2MHz

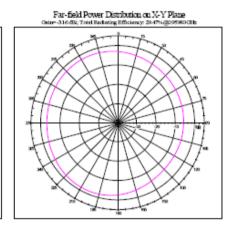
Far-field Power Distribution on N.Z. Hame (F-Flance of L.) Ped Sense)


Getin - 2.54 dBi; Total Rackating Bifficiency: 33.35% (\$0.509520 GBb)

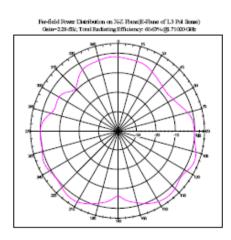


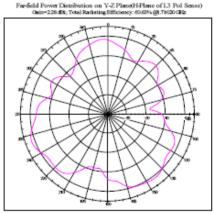


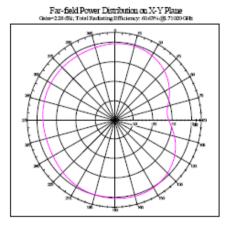

Frequency:947.4MHz



Frequency:959.8MHz

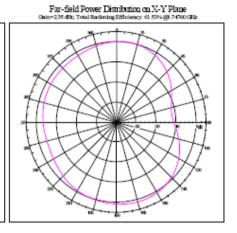




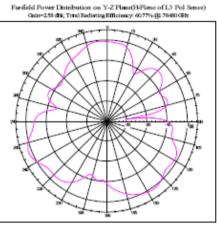


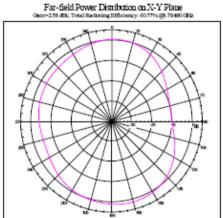
GSM1800

Frequency:1710.2 MHz

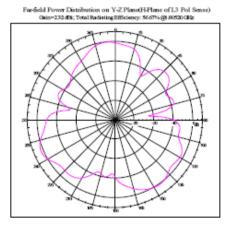


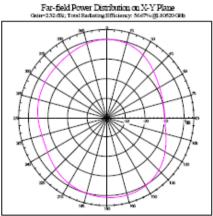
Frequency:1747.6 MHz


Far-field Power Distribution on NZ. Hene(E-Flower of L3 Fed Same)
Gain-235-file, Total Fachsing Ifficiency of S94(g) 2-4700 GB


Far-field Power Distribution on V-Z Plant(H-Plane of L3 Pol Sense)
Gen-235-49, Total Todasing Bill clancy of 59%-gg 3-690 Get

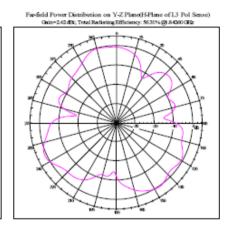
Frequency: 1784.8 MHz

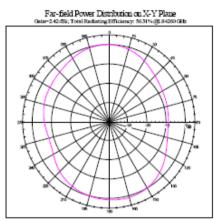

Far-field Down Distribution on No.2 Hans (B-Hans of L.3 Fel Same)
Gein-2-59-GN; Total Radiating Efficiency 60.77% (B-7640 GHz

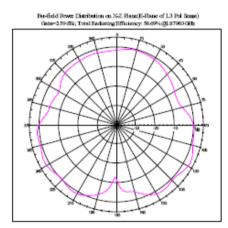


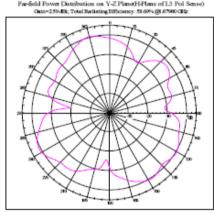
Frequency:1805.2 MHz

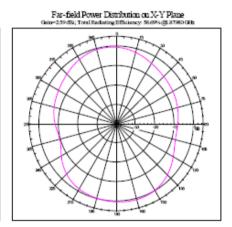
Far-field Rower Distribution on Not. Hame (E-Hame of L3 Pol Sense)
Gaine-232-dRu, Total Rackstring Billiciency. 56-674-03. 20220-GRb



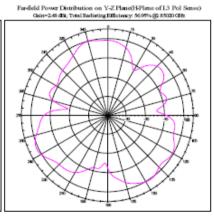


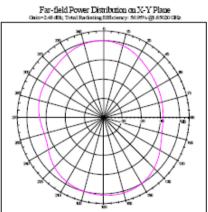

Frequency:1842.6 MHz


Particid Fower Extends on the Section of List Section (Chine 24.2-55); Total Extending Efficiency 56.514-68; B-GOOGE



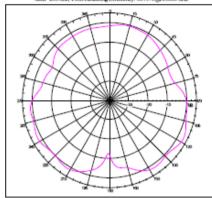
Frequency:1879.8 MHz



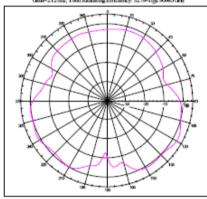

GSM1900

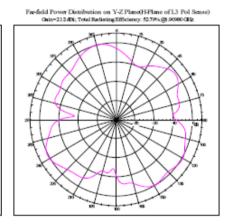
Frequency:1850.2 MHz

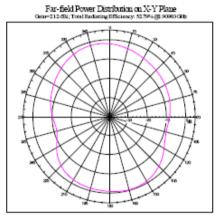
Far-field Rover Extentation on NoZ Hune(E-Hane of L3 Red Sense)


Gein-2-44-dis; Total Radating Hills-inery: 56599-168 35000 Geb

Frequency :1880.0 MHz
For-field Power Distribution on NGC Hencell-Flaunc of 1.3 Pel Strands
Geom-260-disk; Total Radiating Efficiency: 58:75%-(8):88000 GRE

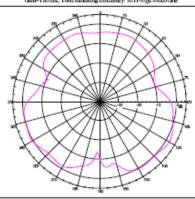


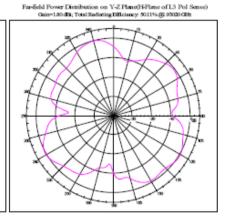

Far-field Power Distribution on Y-Z-Plane(H-Plane of L3 Pol Sense) Onin-260dB; Total Radisting Efficiency: 58.75% (§ 88000 GHz.

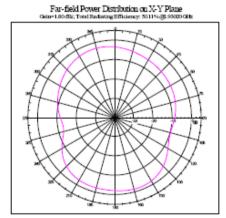

Far-field Power Distribution on X-Y Plane

Frequency:1909.8 MHz

Far-field Power Distribution on N-Z Hame(E-Flane of L3 Pol Same) Gain=212:fili; Total Radiating Efficiency: 52:79% (f) 9000 GHz



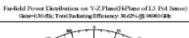


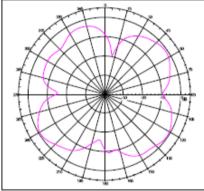


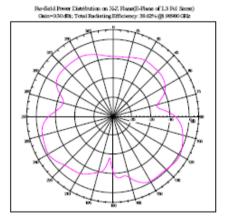
Frequency: 1930.2 MHz

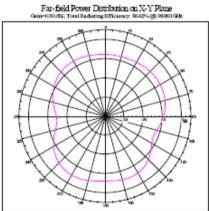
Far-field Power Distribution on N-Z Hame (E-Flane of L3 Pol Sense) Gein=1.00effs; Total Radiating Efficiency: 50.11% (§).98020 Geb

Frequency: 1960.0 MHz

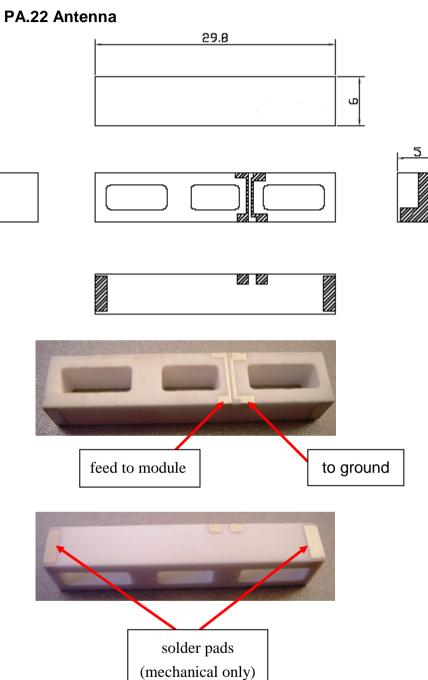

Firefield Power Distribution on No. Hampfl-Hame of 13 Pel Sume)
Gain-131 dB; Total Radating Bifficiency of 20% (8) 5000 GB

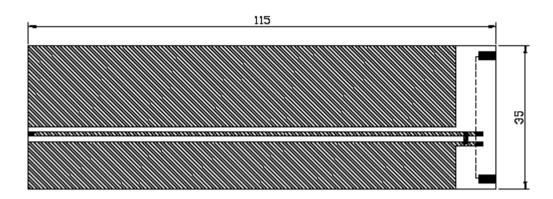

Far-field Power Distribution on Y-Z Plant(H-Plane of L3 Pol Sense)


Gain-1.31 d3; Tetal Radaring Efficiency d 220-4g 50000 Gb.

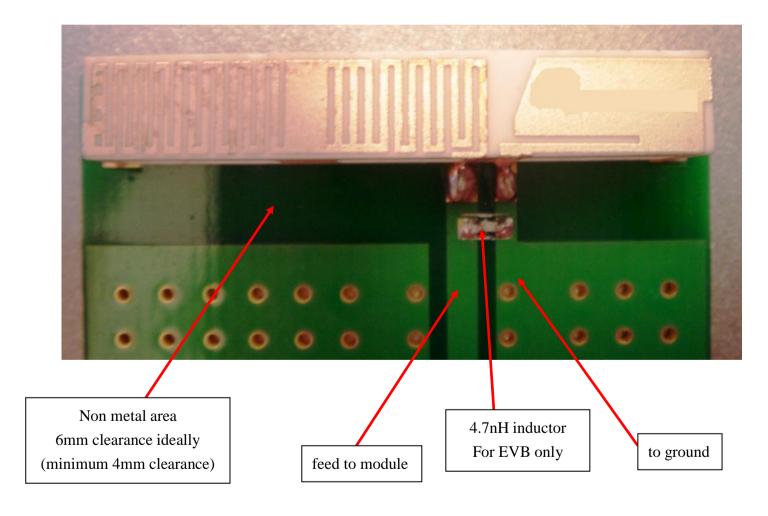


Frequency: 1989.8 MHz

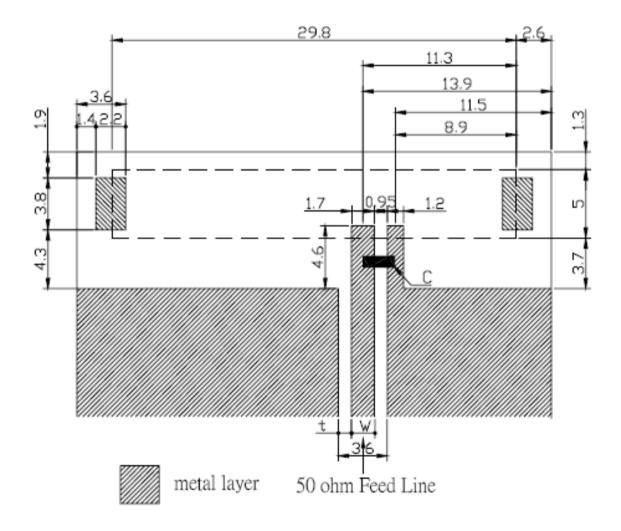


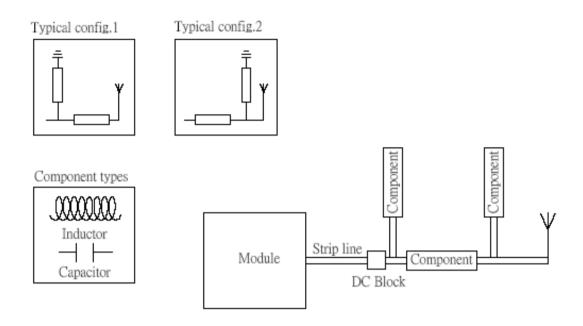

3.0 Mechanical Dimensions

3.1

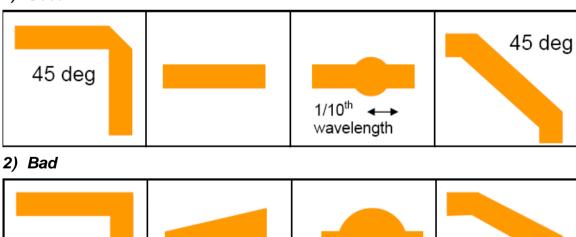


3.2 Evaluation board dimensions


3.3 Recommended layout (as per Taoglas evalution board)


View from underneath board – note solder pads either side – laid out on non metal area Layout dimensions - Allow 6mm clearance all around if possible (minimum 4mm)

t,w=Unique dimensioning according to your PCB.
C=inductor and capacitor values according to your specific device.


3.4 Recommended Transmission Line and Matching Network

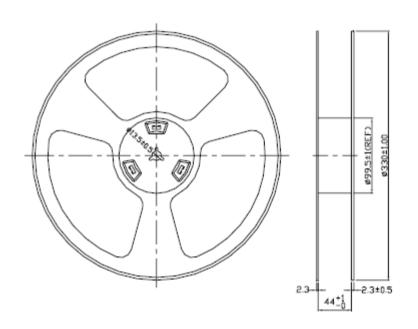
The matching network has to be individually designed using one, two or three components.

Note: The PA.22 can be made "quad band" with appropriate matching circuit Guidelines for routing RF when designing a PCB;

1) Good

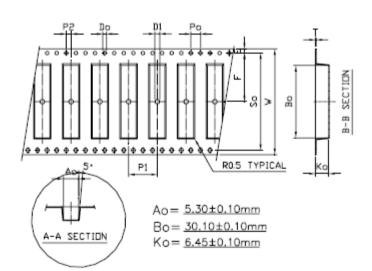
1/10th

wavelength


4.0 Delivery Mode

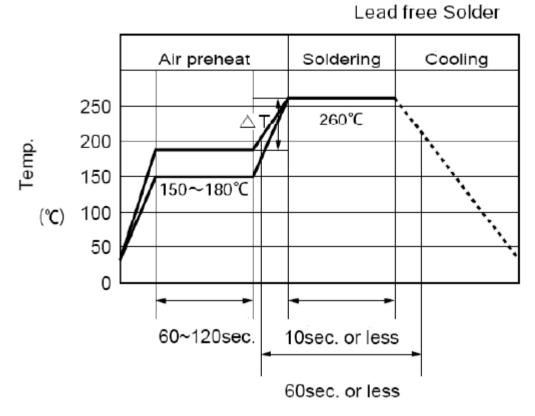
Blister tape to IEC 286-3, polyester

Pieces per tape: 450


4 Reels (1800) in each Carton - Carton size 37cm*36cm*27.5cm

Carton Weight – Net Weight 5.9kg – Gross Weight 7.5kg (approx)

Unit: mm	
Symbol	Spec.
K1	_
Po	4.0±0.10
P1	12.0±0.10
P2	2.0±0.15
Do	1.5 ‡8,1
D1	2.0(Min)
E	1.75±0.10
F	20.2±0.10
10Po	40.0±0.10
W	44.0±0.30
T	0.30±0.05
So	40.4±0.10



Note: Design application note also available

Note: Environmental test report also available

5.0 Recommended Reflow Temperature Profile

- (1) Time shown in the above figures is measured from the point when chip surface reaches temperature.
- (2) Temperature difference in high temperature part should be within 110°C.
- (3) After soldering, do not force cool, allow the parts to cool gradually.
- *General attention to soldering:
- High soldering temperatures and long soldering times can cause leaching of the termination, decrease in adherence strength, and the change of characteristic may occur.
- for soldering, please refer to the soldering curves above. However, please keep exposure to temperatures exceeding 200°C to under 50 seconds.
- please use a mild flux (containing less than 0.2wt% Cl). Also, if the flux is water soluble, be sure to wash thoroughly to remove any residue from the underside of components that could affect resistance.

Cleaning:

When using ultrasonic cleaning, the board may resonate if the output power is too high. Since this vibration can cause cracking or a decrease in the adherence of the termination, we recommend that you use the conditions below.

Frequency: 40 kHz max. - Output power: 20W/liter -Cleaning time: 5minutes max.