

LPM Demo Case User Guide

1vv0300957 Rev.2 - 2013-11-21

Making machines talk.

APPLICABILITY TABLE

PRODUCT	
NE50-868	
NE50-433	
NE70-868	

SW Version
GC.MOA.03.17 GD.MOA.03.17
GJ.M0A.03.18

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved. Mod. 0806 2011-07 Rev.2 Page 2 of 30

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

Page 3 of 30

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

Copyright © Telit Communications S.p.A.

Page 4 of 30

Contents

1.	Intr	roduction	7
1.	1.	Scope	7
1.	2.	Audience	7
1.	3.	Contact Information, Support	7
1.	4.	Document Organization	8
1.	5.	Text Conventions	8
1.	6.	Related Documents	8
2.	Ger	neral Description	9
2.	1.	DemoCase philosophy	9
2.	2.	Hardware Consideration	9
2.	3.	Low Power Mesh Consideration	9
2.	4.	SRManagerTool Consideration1	0
3.	Det	ailed equipment description1	1
3.	1.	List of N50 equipment1	1
3.	2.	List of N70 equipment1	1
3.	3.	NE 50-70 Democase description1	2
3.	4.	Dip module1	3
3.	5.	I/O Management board1	4
4.	Tut	orial1	6
4.	1.	General description	6
4.	2.	Device configuration (mandatory)1	6
	4.2.	1. Coordinator configuration1	6
	4.2.	2. Router configuration	7
4.	3.	Step 1 – Start Coordinator and first EndPoint	8
	4.3.	1. Requirement	8
	4.3.	2. Application1	8
4.	4.	Step 2 - Add Routers to the network	8
	4.4.	1. Requirement	8
	4.4.	Z. Application	7

THE S

Page 5 of 30

4	 5. Step 3 – Extend the Low Power Mesh network	19 19 19
4	.6. Step 4 - Exchange information through the network 4.6.1. Requirement 4.6.2. Application	21 21 21
4 D	 .7. Step 4 - Increase your expertise by adding manually the last module of the emoCase 4.7.1. Requirement 	22 22
4	4.7.2. Application .8. Network Monitoring	22 25
5.	Acronyms and abbreviations	28
6.	Glossary	29
7.	Document History	30

1. Introduction

1.1. Scope

The aim of this document is to describe the DemoCase dedicated to Low Power Mesh demonstration, based on NE50 (433 or 868) and on NE70 (868) radio modules.

This user manual gives a detailed description of the DemoCase regarding the hardware parts and the software functionalities. It also gives the basic principles to build and manage a mesh network with the different elements of the DemoCase.

1.2. Audience

This document is intended for customers who are about to test or learn how Low Power Mesh works.

1.3. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals, contact Telit Technical Support Center (TTSC) at:

TS-SRD@telit.com TS-NORTHAMERICA@telit.com TS-LATINAMERICA@telit.com TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

To register for product news and announcements or for product questions contact Telit Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

Page 7 of 30

1.4. Document Organization

This document contains the following chapters (sample):

<u>"Chapter 1: Introduction</u>" provides a scope for this document, target audience, contact and support information, and text conventions.

"Chapter 2: General Description" gives an overview of the features of the product.

"Chapter 3: Detailed equipment description" describes in details the characteristics of the provided hardware.

"Chapter 4: Tutorial" describes how to use the DemoCase and the possible uses of DemoCase

<u>"Chapter 5: Acronyms and Abbreviations</u>" provides a complete list of acronyms and abbreviation used in this document.

<u>"Chapter 6: Glossary"</u> provides some fundamental explanations about Low Power Mesh

"Chapter 7: Document History" provides a complete revision list.

1.5. Text Conventions

<u>Danger – This information MUST be followed or catastrophic equipment failure or bodily</u> <u>injury may occur.</u>

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.6. Related Documents

- [1] Low Power Mesh Protocol Stack User Guide, 1VV0300944
- [2] SR Manager Tool User Guide, 1vv0300899
- [3] xE50 -433/868 RF Module User Guide, 1VV0300905
- [4] xE70 868 RF Module User Guide, 1vv0301037

Page 8 of 30

2. General Description

2.1. DemoCase philosophy

The goal of the DemoCase is to show to customers:

- The possibilities offered by the Low Power Mesh embedded firmware.
- The know-how of Telit regarding innovating embedded network technology.

This DemoCase allows customers to create a mesh network and test the Low Power Mesh functionalities. The application available is serial link data transmission and telemetry.

2.2. Hardware Consideration

The DemoCase contains devices based on NE50 (433 or 868) and on NE70 (868) radio modules.

For the current DemoCase, modules are configured by default as stated below:

- Center Frequency: 433.6 MHz or 869.525 MHz
- RF Datarate: 38.4 kbps
- RF Output power: 10mW.

Power and ranging characteristics strongly depend on the module. For detailed information please take a look at the [3] for NE50, [4] for NE70.

2.3. Low Power Mesh Consideration

Low Power Mesh protocol is based on cluster tree network architecture. It hosts 3 device types:

- Coordinator: this is the master of the network. Most of the network parameters are set into the Coordinator, which broadcasts the configuration to the other devices. There is only one Coordinator in a network and obviously, it doesn't have any parent, only children.
- Router: this device is able to route a message from its parent to one of its child, from a child to another child or from a child to the parent. A Router has only one parent and could host up to 100 children. The parent of a Router can be the Coordinator or another Router. Depending on the configuration, the total number of Routers in a network could reach up to 100.
- EndPoint: an EndPoint is a termination of the network, i.e. it doesn't have any child. An EndPoint could either have a Router or the Coordinator as parent. It can only communicate via its parent.

Page 9 of 30

Low Power Mesh uses beacons to manage the network. It is Low Power capable and a same network can mix either powered or low power devices.

For further information, please refer to the dedicated documentation [1] available on Telit web site.

2.4. SRManagerTool Consideration

SRManagerTool is the PC software to configure and monitor a Low Power Mesh network. Three operating modules are available with some dedicate functions and interactive ones.

- <u>*Tree view*</u>: tree view of the mesh network with auto discovery.
- *Terminal*: customized terminal to exchange every type of frames over the mesh network.
- <u>Configuration Wizard</u>: the easiest way to configure and add a module to an existing network or to build a completely new network.

Please refer to the Telit Download zone website to get the latest software version. For installation and detailed use, please refer to the dedicated documentation [2] also available on the Telit web site.

3. Detailed equipment description

3.1. List of N50 equipment

The DemoCase contains the following items:

- 1 module to be configured as Coordinator (DIP module named 'COORD'),
- 1 module to be configured as Router (DIP module named 'R1'),
- 2 EndPoints (DIP module named 'E1' and 'E2'),
- 4 USB EVK (for DIP modules management)
- 2 I/O management boards (with LEDs and switches),
- 4 SMA antennas (for DIP modules),
- 4 classical USB cables (for EVK),
- 4 primary +9V batteries.
- 1 Information sheet

3.2. List of N70 equipment

The DemoCase contains the following items:

- 1 module to be configured as Coordinator (DIP module named 'COORD'),
- 1 module to be configured as Router (DIP module named 'R1'),
- 2 EndPoints modules (DIP module named 'E1' and 'E2'),
- 4 USB EVK (for DIP modules management)
- 2 I/O management boards (with LEDs and switches),
- 4 SMA antennas (for DIP modules),
- 4 classical USB cables (for EVK),
- 2 power supply blocks (+6V) with jack connectors,
- 2 primary +9V batteries,
- 1 Information sheet

Please note that the 4 NE50-70 modules are configured as EndDevice in factory; two of them should manually be configured as Coordinator and Router, as described below.

Page 11 of 30

3.3. NE 50-70 Democase description

Equipment	Picture	Functionalities
DemoBoard <i>COORD, R1</i>	EVK + DIP module + Antenna	Supplied through USB connection or +9V battery USB Serial Link (through classical USB cable) Serial data transmission functionality
DemoBoard <i>E1, E2</i>	EVK + DIP module + Antenna	Supplied with +9V battery USB Serial Link (through classical USB cable) Can be plugged with I/O management board Serial data transmission and telemetry functionalities
I/O management board		To be plugged on DemoBoard with E1 and E2 only. Allow telemetry application
Classical USB cable		For EVK serial connection

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved. Mod. 0806 2011-07 Rev.2 Page 12 of 30

3.4. Dip module

Radio modules supplied with DemoBoards are soldered on a DIP receptacle. This DIP module can be used for a specific integration, other than DemoCase. For mechanical characteristics, please refer to [3] for NE50, [4] for NE70.

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved. Mod. 0806 2011-07 Rev.2 Page 13 of 30

3.5. I/O Management board

This board is used for an easy access to the Inputs/Outputs of the DIP module. It is dedicated to EndPoints only (E1 & E2). It is very useful to test the telemetry functionality available on the Low Power Mesh.

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved. Mod. 0806 2011-07 Rev.2 Page 14 of 30

They are positioned between the mother board and the DIP module, as shown on the following picture:

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved. Mod. 0806 2011-07 Rev.2 Page 15 of 30

4. Tutorial

4.1. General description

The DemoCase allows very quick start to enjoy the functionalities of Telit Low Power Mesh associated to the SRManagerTool software.

The following tutorial allows discovering both the Low Power Mesh and the SRManagerTool. Each step is dedicated to learn a particular functionality. An example is shown for 868MHz Democase version (either NE50 or NE70), but it could be easily applied also for NE50 - 433MHz.

4.2. Device configuration (mandatory)

Since the devices are configured as EndPoints in factory, before any other operation they should be set to the proper status (if different). There are two ways to perform it: by Hayes commands or by SRManagerTool. The easiest way is by SRManagerTool. In paragraphs 4.2.1 and 4.2.2 the description.

4.2.1. Coordinator configuration

- Open SRManagerTool to make an interactive window appear. Select Mesh technology and then click Management button. Select the correct COM port (the one where its USB cable is mapped) and click 'Connect' to start the communication with this module.
- Just after (within 1 second), put the PROG switch on the I/O management board to 'ON' position, the Asso Led should blink fast; if not: reset PROG switch to OFF, switch off the device and retry.
- Click "Configuration Wizard". A configuration window appears as depicted in the following picture.

LPM Demo Case User Guide

1vv0300957 Rev.2 - 2013-11-21

meantinere	onngenations								
Module Informa	stions		Radio Pow	er				Commande	
Serial Number			TryLes			4		Apply	Values
Firmware Versio	m		NE50	+10dBm/	10mW	~			
Rootloader Ver	ion		Low Point					Read	Values
Module Type	Serial	Protocol	Disable Disable					Restart Module	
Coordinator Coordinator Coordinator Coordinator Coordinator Coordinator Serial Timeout End Point Sma.		ulting protocol stal Timeout	Children Side Total Periodic Wakeup				Delauk Values		
		ma	Flow control			•		Factory Value	
Network setting	LSB	MSB	O Full but	ler:	O Disable			LordE	rom File
Client Id	48	48	I					1000011	ISAN T NO
Parent Id	255	55 255	Time sating				Save To file		
Delault Recipie	r# 48	48	Net Penod	time! [500	0				-
Network Id	48		Superitum Router Pol	in duration (1 silion (0.255	(355) [] - 10				
Association set	ting		Bare Ta	ne		-	Radio Band		
Mode	Criteria	RSSI	○ 63 m	💭 63 ma				~	
 Auto 	Deep	 Worst 	 125 	roo			in the second		
O Marxal	O High	O Bad	C 250	ma			Papibad		
Number of failed	beacon (0-255)	O Good O Best	0 500	500 ms 1000 ms 6×110 bs				14	

- Click on the "Read Values" key to charge the pre-loaded settings;
- In the field "Module Type" (marked in red) change the value to Coordinator for this module.
- Click on the "Apply Values" key, and then close the window.
- Switch the device off, and then put the PROG switch to OFF state, and then switch the device on; from now on, this device is configured as Coordinator.

4.2.2. Router configuration

- From the SRManagerTool interactive window, keep 'Mesh technology' selected and click on Management button. Select the correct COM port of a second device (the port where its USB cable is mapped) and click 'Connect' to start the communication with this device.
- Just after (within 1 second), put the PROG switch on the I/O management board to 'ON' position, the Asso Led should blink fast; if not: reset PROG switch to OFF, switch off this device and retry.
- Click "Configuration Wizard".
- Click on the "Read Values" key to charge the pre-loaded settings;
- In the field "Module Type" change the value to Router.
- Click on the "Apply Values" key, and then close the window.
- Switch the device off, and then put the PROG switch to OFF state, and then switch the device on; from now on, this device is configured as Router.

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved.

Page 17 of 30

4.3. Step 1 – Start Coordinator and first EndPoint

4.3.1. Requirement

The Coordinator sends a beacon every 5 seconds. This frame contains network information used by any module who wants to join the network. Each module that is capable to have children has to send periodical beacon to synchronize and keep alive its children.

The beacon is very useful for low power device because it allows quickly synchronizing a module after a sleep period.

The beacon contains also the number of pending messages for each child. Thus, a module does not need to poll its parent to know if any messages are to be expected. This allows very low power and fast operations.

Finally, beacon can be considered as a precious newsletter used to broadcast periodically the network information to all the modules.

4.3.2. Application

Switch on the Coordinator. Then, connect S1 EndPoint to a USB port of your computer. The Coordinator does not need to be connected to a serial port.

Open SRManagerTool and an interactive window appear. Select Mesh technology and then click Management button. Select the correct COM port (the one where its USB cable has mapped) and click 'Connect' to start the communication with S1.

Now send the hayes command 'AT/V' to the Coordinator as shown below:

уре		Recipient	Data	
HAYES	Y	COORD	ATM	
18165	Y	COOND	BLO	
	the second se			
100.381	1000			
	100			
	100			

Wait for the answer; it looks like "nÿÿGC.M0A.03.162". It means S1 is correctly connected to the Coordinator.

4.4. Step 2 - Add Routers to the network

4.4.1. Requirement

When a new module joins the network, it is necessary to make an association to establish a virtual link between the new module and its parent. As soon as the association is complete, a route is opened and available to exchange information between the parent and its child.

Page 18 of 30

For Routers, the association process also includes the book of a time slot to send beacons to its potential future children.

4.4.2. Application

Now, switch on R1 Router; it is not necessary to connect it to the computer. At start-up, it will immediately search for a valid parent to associate to. The status of the association procedure can be monitored by the yellow led flashing on the device:

- Fast blink (2 per second) indicates that no network has been found at this time.
- Slow blink (1 per second) indicates that a valid network is found and the module is looking for the best parent in this network.
- LED ON (fixed) indicates that association has succeeded and that the module is ready to transmit data over the network.

After LED ON it could be repeated the network discovery hayes command; as a result, it should be seen R1 connected to the Coordinator.

4.5. Step 3 – Extend the Low Power Mesh network

4.5.1. Requirement

Thanks to the association process, all Routers can build a list of all their children. This table is first used to route frames through the network but it is also very useful to reconstitute the complete network architecture. When a module moves from a parent to another, a new association is started to update both the old and new parent lists.

4.5.2. Application

SRManagerTool includes a network tree view with automatic discovery. Click on the "Network Discovery" button to launch the discovery tool.

LPM Demo Case User Guide

T Network Discovery Tool			
	Coordinator Router End Device Information incomplete from the module		gloved 1 settembre 2011 Save Log Load Log Clear Log
Waiting time 1 [sec.] Start Discovery Save	Close	Load	Save Commands Send Commands Load Commands Clear Commands
Summay	Level	Summay	Uvok: offine

Push the "Start Discovery" button and the discovery starts.

Beginning with the Coordinator, the discovery tool asks to each module the list of its children. The architecture of discovered network will be displayed in the left panel. This procedure asks only a few seconds to complete for a network like the demo one.

When discovery is finished you can see the network architecture at this step.

It is possible now to extend the network and then discover the new modules added.

Now plug an I/O management board on E1 DemoBoard. Switch on EndPoint E1. This module has no preconfigured parent, so it will look for the best parent to make association. Connect E1 to PC serial cable. Open SRManagerTool and an interactive window appear. Select Mesh Lite technology and click Management button. Select the correct COM port and click 'Connect' to start the communication with E1.

Now the EndPoint E1 is associated to the Coordinator; we can change its parent sending some Hayes command (for the correct syntax refer to [1] and [2]) using the MeshLite Management of SRManagerTool (you can return to that window closing the Network Discovery window).

Now we have to send 3 commands to the module E1:

- ATS313=82 (ParentId LSB)
- ATS314=49 (ParentId MSB)
- ATO (Module Reboot)

Now we wait for some seconds and then we can perform a new Network Discovery. Now the new parent of E1 will be R1. In order to restore the previous network configuration, please send the following commands to E1:

- ATS313=255 (ParentId LSB)
- ATS314=255 (ParentId MSB)
- ATO (Module Reboot)

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved.

1vv0300957 Rev.2 – 2013-11-21

4.6. Step 4 - Exchange information through the network

4.6.1. Requirement

Low Power Mesh protocol is able to route a message from one side of the network to the other by consecutive jumps. This allows increasing range compared to point to point architecture.

Each frame uses the tree way to join the recipient from the sender. Even tough, it isn't necessary to route systematically by the Coordinator. The route is made by the tree but it is as short as possible using the minimum number of jumps.

4.6.2. Application

It's time to use the built network to exchange any type of data from/to each network element. Thanks to the Mesh Management Terminal, just select the command type, then the recipient and, if needed, the data payload; then click "Send" button to send the composed frame. Mesh Management Terminal automatically does the correct encapsulation. On the other side, received frame are un-encapsulated to be displayed in a convivial appearance including receive time, frame type and sender.

For example:

- You can send a 'PING' frame to R1 and wait for the 'PONG' frame confirming the presence of R1.
- In the same way you can send 'HAYES' order like AT/V to check the firmware version of a module.
- You can send a 'TELEMETRY' frame to E1 to verify the value of its analogical input or to light on its blue or green LED.

WARNING:

Before sending telemetry frames to E1, it is important to set its I/O registers to define inputs & outputs regarding the I/O management board.

Example: I/O3_A, I/O4_A, I/O5_A and I/O6_A must be set as inputs, IO7_AD_DA, IO8_AD_DA and I/O9 must be set as outputs. Send a 'HAYES' order to E1 with ATS345=15 payload.

Please refer to the Low Power Mesh protocol stack & SRManagerTool manuals (see [1], [2]) for more information about data exchange.

A very simple application: switch on the green led. Set the register 345 equal to 0 on EndPoint E1 (ATS345=0). Then select "IO" type on MeshLite Management Terminal, write digital, and select radio button "6 - On" as shown below:

Page 21 of 30

When E1 receives this command, the green led will be switched on. In order to switch off the green led, send the same command but selecting the radio button "6 - Off".

4.7. Step 4 - Increase your expertise by adding manually the last module of the DemoCase

4.7.1. Requirement

Many parameters could be set in Low Power Mesh to perfectly match your application. To join a network, a module needs at least to know the network number and to have a module identifier (not already used in the network). Other optional parameters can be set like Low Power configuration, Association Criteria or Auto Repair functionality.

Depending of the module type, more or less parameters have to be set. The Coordinator is the module which needs the more attention because it has to know critical network information like Network Period, Base Time, Payload Size...

Routers and EndPoints need less information than the Coordinator, especially if Low Power is not requested. If Low Power is needed, Super Frame Duration, and Low Power registers must be configured.

4.7.2. Application

In the DemoCase, most of parameters are already set for a quick start; all modules have been configured except E2. It is proposed to configure E2 as a low power EndPoint which sends automatically a message to the computer (via E1) when a front edge occurs on IO5_A.

- Plug an I/O management board on E2 DemoBoard do not switch ON E2 for the moment.
- Plug the module to a serial link (change the port number in SRManagerTool and click "Connect")
- Switch ON E2.
- Just after (within 1 second), put the PROG switch on the I/O management board to 'ON' position, the Asso Led should blink fast; if not: reset PROG switch to OFF, switch off E2 and retry.
- Click "Configuration Wizard". In just a few steps, you can configure the new device.

Page 22 of 30

Module Informa	tions		Radio Power		Commands
Serial Number			TinyLite	~	Applu Values
Firmware Versio	n		NE50 +10dBr	n/10mW	
Postloader Vere	ion		-1 ou Power		Read Values
buuuduei veis			Disable		
Module Type	Seria	Protocol	Children Side		Restart Modul
🔘 Coordinator	O SI	tuffing protocol	Total Period	lic Wakeup	Default Value
Router	Sec. 5	erial Timeout			D'ordan Palac
End Point	5	ms	Flow control	- Acknowledge	Factory Value
Network setting	100	HCD	 Half buffer 	 Enable 	
Client Id	48	48	O Full buffer	O Disable	Load From File
Parent Id	255	255	_ Time setting		Save To file
Default Recipient 48		48	Net Period (ms) 50	000	
Network Id			Super frame duration	(1-255) 1	
	48		Router Position (0-25	5) 0	
Association sett	ing		Base Time	Ra	dio Band
Mode	Criteria	RSSI	○ 63 ms	869	3.525 MHz 🔽
Auto	Deep	Worst	125 ms	1	1
O Manual	🔘 High	🔘 Bad	○ 250 ms	Paj	18×14 butes
Number of failed	heacon (0-255)	O Good	○ 500 ms		12 V / C butes
	0000011[0 200]	O Best	○ 1000 ms		6X 110 hutes
2					on no bytes
2					
2 Telemetry Automatic Tele	emetry			_ NE50	
2 Telemetry Automatic Tele	emetry) Digital Only	Analog Unly	 Digital and Analog 	NE50 1/03_A	1/07_AD_DA
2 Telemetry Automatic Tele Disable (emetry Digital Only	🔿 Analog Only	O Digital and Analog	NE50 1/03_A ◯ In ⊙ Out □ IRQ	1/07_AD_DA ◯ In ⊙ Out □ IRQ
2 Telemetry Automatic Tele ① Disable (① TinyLite ② I/01	emetry) Digital Only	Analog Only C1/04	 Digital and Analog 	NE50 1/03_A ◯ In ⓒ Out □ IRQ	1/07_AD_DA ◯ In ⓒ Out □ IRQ
2 Telemetry Automatic Tele Disable (TinyLite 1/01 0 In 0 D	emetry Digital Only lut IBQ	 Analog Unly 1/04 In 0 tr 	Digital and Analog	NE50 1/03_A ○ In ③ Out □ IRQ 1/04_A ○ In ③ Out □ IRQ	1/07_AD_DA ○ In
Z Telemetry Automatic Tele Disable (TinyLite -1/01 In 0 0 -1/02	emetry) Digital Only lut IBQ	 Analog Unly 1/04 In Ο ιι ι/05 	Digital and Analog	NE50 1/03_A ○ In ⊙ Out □ IRQ 1/04_A ○ In ⊙ Out □ IRQ	1/07_AD_DA ○ In ③ Out □ IRQ 1/08_AD_DA ○ In ③ Out □ IRQ
Z Telemetry Automatic Tele Disable (TinyLite -1/01 -1/02 -1/02 -1/02	imetry Digital Only Iut IRQ	○ Analog Dnly 1/04 10 10 10 105 10 105 10	Digital and Analog IRQ IRQ	NE50 1/03_A ○ In ● Out □ IRQ 1/04_A ○ In ● Out □ IRQ 1/05_A ○ In ● Out □ IRQ	1/07_AD_DA ○ In
Z Telemetry Automatic Tele Disable (TinyLite 1/01 0 In 0 C 1/02 0 In 0 C	imetry Digital Only Iut IBQ	● Analog Only 1/04 ○ In ○ 0. 1/05 ○ In ○ 0.		NE50 1/03_A ○ In ⊙ Out □ IRQ 1/04_A ○ In ⊙ Out □ IRQ 1/05_A ○ In ⊙ Out □ IRQ	/07_AD_DA ◯ In ⓒ Out □ IRQ /08_AD_DA ◯ In ⓒ Out □ IRQ /09 ◯ In ⓒ Out □ IRQ
Z Telemetry Automatic Tele Disable (TingLite 1/01 1/02 1/02 1/03	ut IRQ	● Analog Dnly /04 ○ In ○ DL /05 ○ In ○ DL /06		NE50 1/03_A ○ In ⓒ Dut □ IRQ 1/04_A ○ In ⓒ Dut □ IRQ 1/05_A ○ In ⓒ Dut □ IRQ 1/05_A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- First of all you have to choose the module type, here an EndPoint is desired.
- 'Network Id' of the demo case is 49. E2 is the ID desired for the last EndPoint, so fill 'Client Id LSB' as 69 (ASCII code of 'E') and 'Client Id MSB' at 50 (ASCII code of '2'). 'Default Recipient' is the destination module in case of non encapsulated frames. It is a binding association. Here, we want E2 to transmit to E1. So set 'Default Recipient LSB' as 69 (ASCII code of 'E') and 'Default Recipient MSB' as 49 (ASCII code of '1').
- Here are the parameters to select the way the new module will associate to the network. In this tutorial, we want to define manually R1 as a parent for E2. Choose 'Manual' for 'Association setting Mode'. 'Association setting Criteria' is used by the module to select the best parent if not defined. Let the default value. 'Number of failed beacon' defines the number of consecutive non received beacons before

Page 23 of 30

considering loss of the link, 2 is the default and correct value here. Define R1 as parent of E2, set 'Parent Id LSB' as 82 (ASCII code of 'R') and 'Parent Id MSB' as 49 (ASCII code of '1').

- We want E2 to be Low Power and to wake up only for receiving its parent beacon. Choose 'Total' low power and 'Periodic Wake up' every 1 beacon.
- Click the 'Apply Values' button of Configuration Wizard: it sends the full setting in the memory of E2, you can also save this configuration in a file for future reference ('Save To file' button).
- Power OFF the device and put back the PROG switch.

When completed, switch on E2. After the association process, you can refresh the Tree View to see E2 as a new child of R1.

We have configured E2 as Low Power, so that it is necessary to configure R1 in 'Low Power children Side'. In this configuration, R1 will send message to E2 only when E2 is awake. All downward messages for E2 are buffered by R1 to be sent only during awake slot. To do this, you have to send a Hayes frame to R1 with Mesh Terminal. Send 'HAYES' to 'R1' with ATS340=1 as data payload (this is the Hayes order to switch R1 in 'Low Power Child Side').

Your low power EndPoint E2 is now ready to use. As previously for E1, it is important to set I/O registers of E2: IO5_A must be set as input and interrupt input. For that, send a 'HAYES' order to E2 with ATS345=4 payload then with ATS346=4 payload.

You can now work with E2 EndPoint. Push the button connected to IO5_A and leave it: it will wake up the module and send automatically its inputs status to the default recipient, which is S1: as S1 is connected to the PC, you will have the status displayed on the MeshLite Management Terminal.

It is also possible to send a message to E2. Try for example to send 'PING' frame to E2 and wait for the 'PONG' response. You observe that response could take a few seconds to arrive due to the low power setting. However the response time of all other devices (including R1) is kept very short.

Page 24 of 30

4.8. Network Monitoring

An accurate network monitoring could be performed using the SR Manager Tool and an external tool, Wireshark.

Wireshark is a network packet analyzer, widely used for troubleshooting and analysis of communication protocols. It is an open source application and is released under the GNU General Public License version 2.

To perform a network packet analysis, a device in the set should be completely dedicated to this aim. A typical configuration, using the Demo Case, could be the following:

- 1 Coordinator
- 1 Router
- 1 End device
- 1 Monitoring device (i.e. the 2nd End Device).

Use the SRManagerTool in order to flash a Telit module NE70 module with the firmware GC.M0S.01.01-B007.hex or a more recent version (the firmware is distributed along with the SRManagerTool packet, in the path:

~\W_ZB_ML-MB_Sniffer\MeshLite\NE50\NE50-Gx.M0S\868MHz_13_Bands).

When the module is flashed:

- Switch the SR board OFF (SW2);
- Turn the programming switch OFF (SW4) on the SR board;
- Switch the SR board ON (SW2).

Now the device is monitoring the network.

The following step is to set the software analyzer (Wireshark). The option "Analyzer" should be selected in the SRManagerTool main panel.

As depicted below, the proper parameters concerning the serial SR sniffer node address, the radio band and the Wireshark path should be inserted into the proper fields. For a more detailed configuration, please take a look at [2], ch. 3.5.

Note that the "NE50-868-GC.M0S 13 Band" Source should be selected also for NE70 network monitoring.

Page 25 of 30

			* wireless	-
			- WIFELESS	
			solutions	lein
	Rx Power	Radio Band	Source	Serial Port
~	RSSI: 0-3	868.300 MHz 💌	NE50-868-GC.M0S 13 Band	COM1
row	Rx Power RSSI: 0-3	Radio Band 868,300 MHz 💌	Source NE50-868-GC,M0S 13 Band gram Files\Wireshark\wireshark.exe	Serial Port COM1 Analyzer C:\Pro

The button 'Wireshark' starts the analyzer to capture and save packets during a monitoring session.

It is required to enter the name of a folder where save PCAP file with captured packets.

The PCAP file will have the following format name: Date_Time_Captured.PCAP.

Example: 2012-3-2_15.3.0_Captured.PCAP

The captured packets are shown with the timestamp and their payload just as shown in the following picture, as example.

2	013-11	-20_11.	42.15_Captured.	PCAP - Wi	eshark									
<u>F</u> ile	<u>E</u> dit	View	<u>G</u> o <u>C</u> apture	Analyze	<u>Statistics</u>	Telephony	Tools	Help						
		M 🕅	🕷 🖻 🐻	×2	8 9	. 🗢 🔶	🔊 7	21			2 🖭 6	X X	5 % 😫	
Filte	er:							▼ Expre	ession	Clear App	ly			
No.	i	Time	Source		Destinat	tion		Protocol	Info					
	480 4	1.0/0												
	482	1.876												
	483	0.128												
	484	4.875												
	485	0.128												
	486	4.876												
	487	0.128												
	488	4.875												
	489	0.128												
	490 4	4.876												
	491	0.127					_					_		
	492 4	1.800												
	495	1 876												
	494	1 127												
	496	1.876												
	497	0.128												
	498	0.080												
	499	0.304												
	500	0.000												
	501	0.064												
	502	0.000												
	503	4.428												
	504	0.128												
	505	4.875												
🕀 F	rame	503:	31 bytes o	n wire	(248 bit	:s), 28 k	ytes	captured	1 (224	bits)				
Đ L	lser (encape	sulation no	t handl	ed: DLT=	=147, che	eck yo	ur Prefe	erence:	s->Proto	cols->DL	T_USE	R	
E C	oata ((28 by	/tes)											
000 001	0 03	1d 3 02 0	0 00 64 ff 4 88 13 01	ff ff 01 00	ff 00 0 00 00 9	0 e8 00 b 06	00 63	00	0.d					

Page 27 of 30

5. Acronyms and abbreviations

	ACP	Adjacent Channel Power	
	BER	BER Bit Error Rate	
Bits/s Bits per second (1000 bits/s = 1Kbps)		Bits per second (1000 bits/s = 1Kbps)	
	CER	Character Error Rate	
	dBm	Power level in decibel milliwatt (10 log (P/1mW))	
	EMC	Electro Magnetic Compatibility	
	EPROM	ROM Electrical Programmable Read Only Memory	
	ETR ETSI Technical Report		
	ETSI	SI European Telecommunication Standard Institute	
	FM	M Frequency Modulation	
	FSK Audio Frequency Shift Keying		
	GFSK Gaussian Frequency Shift Keying		
	GMSK Gaussian Minimum Shift Keying		
	IF	Intermediary Frequency	
	ISM	Industrial, Scientific and Medical	
	kbps	kilobits/s	
	LBT	Listen Before Talk	
	LNA	Low Noise Amplifier	
	LPM	Low Power Mesh	
	MHz	Mega Hertz (1 MHz = 1000 kHz)	
	PLL	LL Phase Lock Loop	
	PROM	COM Programmable Read Only Memory	
	NRZ	IRZ Non return to Zero	
RF Radio Frequency		Radio Frequency	
	RoHS Restriction of Hazardous Substances		
RSSI Receive Strength Signal Indicator		Receive Strength Signal Indicator	
Rx Reception		Reception	
SRD Short Range Device		Short Range Device	
	Tx	Transmission	
	SMD	Surface Mounted Device	
	VCO	Voltage Controlled Oscillator	
	VCTCXO	D Voltage Controlled and Temperature Compensated Crystal Oscillator	

Page 28 of 30

Page 29 of 30

6. Glossary

<u>Beacon</u>: beacon is a frame periodically sent by the Coordinator and each Router to their children. This frame contains network information to synchronize and keep alive the children. The beacon information is also used by any module who wants to join the network. The beacon is very useful for low power device because it allows to quickly synchronizing a module after a sleep period. The beacon contains also the number of pending messages for each child. So a module doesn't need to pool its parent to know if any message is waiting. This allows very low power and fast operations. Finally, beacon can be considered as a precious newsletter used to broadcast periodically the network information to all the modules.

<u>"Direct" and "Indirect" child</u>: in the detailed module card, accessible from the tree view, you can read the number of direct and indirect child of a Router. The direct children are the children that are directly associated to the Router. Only one jump is necessary for a frame to go to, or to come back, from a direct child. Indirect children are all the other modules lower in the network. There are the children of the direct children. A frame needs at least two jumps to go from a Router to an indirect child.

<u>Data Payload</u>: Depending of the frame type, you should complete the data payload field in the MeshLite Management Terminal module. The reason is that all Mesh network messages are encapsulated, i.e. all frames contain a header and a data payload. The header contains information about the frame type, the recipient and the sender of the message while the data payload contains the message. As a mail comparison, the header is the envelope with the recipient address while the data payload is the letter inside the envelope.

<u>Binding</u>: In the Configuration Wizard, you are prompted to choose a default recipient, this allows to make binding. A binding is a virtual link between 2 modules. Each frame of the module will be automatically sent to the default recipient what ever the network architecture between the 2 bound modules. This is very useful to associate, for example, a switch remote to a light. In this case, the remote module can move in the network (change of parent) and the binding option insure that the remote still control the same light.

7. Document History

Revision	Date	Changes
0	2011-11-11	First issue
1	2012-10-18	Add 433MHz version
		New EVK and Democase content
2	2013-11-21	Document title change to make it generic to LPM; Added NE70 (868) device; Added Network Monitoring section; General revision.

Reproduction forbidden without written authorization from Telit Communications S.p.A.- All Rights Reserved. Mod. 0806 2011-07 Rev.2 Page 30 of 30