
80000ST10700A Rev.0 2015-06-09

TELIT PYTHON START GUIDE

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 2 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

APPLICABILITY TABLE

PRODUCTS

 PYTHON 1.5.2+ SCRIPT INTERPRETER ENGINE

 GT863-PY
 GT864-QUAD/PY
 GE864-QUAD V2
 GE864-GPS
 GE865-QUAD
 GE910-QUAD V3
 GL865-DUAL
 GL865-DUAL V3
 GL865-QUAD
 GL865-QUAD V3
 GL868-DUAL
 GL868-DUAL V3
 GC864-QUAD V2

PYTHON 2.7.2 SCRIPT INTERPRETER ENGINE

 GE910-QUAD
 GE910-GNSS
 UL865 SERIES
 UL865-N3G
 UE910 SERIES
 HE910 SERIES
 HE910 MINI PCIE

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 3 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

SPECIFICATIONS SUBJECT TO
CHANGE WITHOUT NOTICE

LEGAL NOTICE

These Specifications are general guidelines pertaining to product selection and application and may not

be appropriate for your particular project. Telit (which hereinafter shall include, its agents, licensors and

affiliated companies) makes no representation as to the particular products identified in this document

and makes no endorsement of any product. Telit disclaims any warranties, expressed or implied, relating

to these specifications, including without limitation, warranties or merchantability, fitness for a particular

purpose or satisfactory quality. Without limitation, Telit reserves the right to make changes to any

products described herein and to remove any product, without notice.

It is possible that this document may contain references to, or information about Telit products, services

and programs, that are not available in your region. Such references or information must not be

construed to mean that Telit intends to make available such products, services and programs in your

area.

USE AND INTELLECTUAL PROPERTY RIGHTS

These Specifications (and the products and services contained herein) are proprietary to Telit and its

licensors and constitute the intellectual property of Telit (and its licensors). All title and intellectual

property rights in and to the Specifications (and the products and services contained herein) is owned

exclusively by Telit and its licensors. Other than as expressly set forth herein, no license or other rights

in or to the Specifications and intellectual property rights related thereto are granted to you. Nothing in

these Specifications shall, or shall be deemed to, convey license or any other right under Telit’s patents,

copyright, mask work or other intellectual property rights or the rights of others.

You may not, without the express written permission of Telit: (i) copy, reproduce, create derivative works

of, reverse engineer, disassemble, decompile, distribute, merge or modify in any manner these

Specifications or the products and components described herein; (ii) separate any component part of

the products described herein, or separately use any component part thereof on any equipment,

machinery, hardware or system; (iii) remove or destroy any proprietary marking or legends placed upon

or contained within the products or their components or these Specifications; (iv) develop methods to

enable unauthorized parties to use the products or their components; and (v) attempt to reconstruct or

discover any source code, underlying ideas, algorithms, file formats or programming or interoperability

interfaces of the products or their components by any means whatsoever. No part of these

Specifications or any products or components described herein may be reproduced, transmitted,

transcribed, stored in a retrieval system, or translated into any language or computer language, in any

form or by any means, without the prior express written permission of Telit.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 4 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

HIGH RISK MATERIALS

Components, units, or third-party products contained or used with the products described herein are

NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control

equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear

Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or

Weapons Systems (“High Risk Activities"). Telit, its licensors and its supplier(s) specifically disclaim any

expressed or implied warranty of fitness for such High Risk Activities.

TRADEMARKS

You may not and may not allow others to use Telit or its third party licensors’ trademarks. To the extent

that any portion of the products, components and any accompanying documents contain proprietary and

confidential notices or legends, you will not remove such notices or legends.

THIRD PARTY RIGHTS

The software may include Third Party Right software. In this case you agree to comply with all terms

and conditions imposed on you in respect of such separate software. In addition to Third Party Terms,

the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third

Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY

THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED

IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED

(COLLECTIVELY “OTHER CODE”), AND THE USE OF ANY OR ALL THE OTHER CODE IN

CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES

OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING

WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER

CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR

DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER

EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE

FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © Telit Communications PLC.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 5 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

CONTENTS

1 Introduction 7

1.1 Scope 7

1.2 Audience 7

1.3 Contact Information, Support 7

1.4 Text Conventions 8

1.5 Related Documents 8

2 Before to start… 9

2.1 Considerations about Python limits for Telit modules 9

2.2 Python script references for Telit modules 10

3 Install, edit, compile, download, run and debug a Python script 11

3.1 Install the Python release 12

3.1.1 Modules with 1.5.2+ Python interpreter version embedded 12
3.1.2 Modules with 2.7.2 Python interpreter version embedded: 12
3.1.3 Main changes in the Python interpreter from 1.5.2+ to 2.7.2 version 12
3.1.3.1 Python INTERPRETER VERSION 12
3.1.3.2 Python SCRIPTS EXECUTION SPEED 12
3.1.3.3 float NUMERIC TYPE 12
3.1.3.4 NON STANDARD BUILT-IN METHODS 12
3.1.3.5 posix MODULE 13
3.1.3.6 MOD MODULE (only available from version 12.00.xx4 and version 13.00.xx5) 13
3.1.4 time MODULE 13
3.1.4.1 MDM MODULE 13
3.1.5 MDM2 MODULE 13
3.1.5.1 SER MODULE 14
3.1.5.2 SER2 MODULE (only available from version 12.00.xx4, version 13.00.xx5) 14
3.1.5.3 USB0 MODULE (only available from version 12.00.xx5 and version 13.00.xx6) 14
3.1.5.4 GPS MODULE 14
3.1.5.5 IIC MODULE (only available from version 12.00.xx4, version 13.00.xx5) 14
3.1.5.6 SPI MODULE (only available from version 12.00.xx4 and version 13.00.xx5) 14
3.1.5.7 md5 MODULE 15
3.1.5.8 CMUX 15
3.1.5.9 File Objects 15
3.2 Install Python editor 16

3.2.1 Modules with 1.5.2+ Python interpreter version embedded: 16
3.2.2 Modules with 2.7.2 Python interpreter version embedded: 16
3.3 Edit the source code 17

3.4 Compile the scripts (py files) 19

3.4.1 Modules with 1.5.2+ Python interpreter version embedded: 19

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 6 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.4.1.1 From Command Prompt 19
3.4.1.2 Using the Compile option from the contextual menu 19
3.4.2 Modules with 2.7.2 Python interpreter version embedded: 20
3.4.2.1 From Command Prompt 20
3.4.2.2 Using the Compile option from the contextual menu 21
3.4.2.3 Compiling under Linux environment 22
3.5 Download the files from PC to the module 23

3.5.1 File downloading using Telit AT Controller tool 23
3.5.2 File downloading using contextual menu 26
3.6 Enable the script 29

3.6.1 Modules with 1.5.2+ Python interpreter version embedded: 29
3.6.2 Modules with 2.7.2 Python interpreter version embedded: 29
3.7 Run the python script 30

3.8 Configure debugging 31

3.8.1 Modules with 1.5.2+ Python interpreter version embedded: 31
3.8.1.1 Using ASC1 as debug port 31
3.8.1.2 Using ASC0 as debug port 31
3.8.2 Modules with 2.7.2 Python interpreter version embedded: 33
3.8.2.1 Using USIF1 as debug port 34
3.8.2.2 Using USIF0 as debug port 34
3.8.2.3 Using USB0 as debug port 36

4 Document History 38

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 7 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

1 INTRODUCTION

1.1 Scope

Scope of this document is to help you to get you up and running a possible environment to develop

Python scripts for Telit modules, to the point where you can edit, compile, download to Telit module, and

debug a Python script.

This guide will lead you through the considerations about the limits, available documentation, Python

editor installation, some available Telit tools and some configurations of parameters.

1.2 Audience

This document is intended for customers who are developing applications with Easy Script in Python
Extension feature

1.3 Contact Information, Support

For general contact, technical support services, technical questions and report documentation errors

contact Telit Technical Support at:

TS-EMEA@telit.com

TS-AMERICAS@telit.com

TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on

accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and

suggestions for improvements.

Telit appreciates feedback from the users of our information.

mailto:TS-EMEA@telit.com
mailto:TS-AMERICAS@telit.com
mailto:TS-APAC@telit.com
http://www.telit.com/support
http://www.telit.com/

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 8 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

1.4 Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure

or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the

module, if these points are not followed, the module and end user equipment

may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when

integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.5 Related Documents

● Easy Script in Python, 80000ST10020a (10.xx.xxx)

● Easy Script in Python 2.7, 80378ST10106A (12.xx.xxx, 13.xx.xxx)

● AT Commands Reference Guide, 80000ST10025A (10.xx.xxx, 13.xx.xxx, 16.xx.xxx)

● HE910/UE910/UL865 AT Commands Reference Guide, 80378ST10091A (12.xx.xxx)

● Virtual Serial Device Application Note, 80000nt10045A (10.xx.xxx)

● HE Family Ports Arrangements User Guide, 1vv0300971 (12.xx.xxx)

● GE910 Family Ports Arrangements User Guide, 1vv0301049 (13.xx.xxx)

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 9 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

2 BEFORE TO START…

2.1 Considerations about Python limits for Telit
modules

Before starting to write your project in Python, please consider the Python limits
depending on the Python interpreter engine equipped with your module. They are
described in details in the Easy script in Python user guide written for the specified
Python interpreter engine you are using (1.5.2+ or 2.7.2 at present), that it is also the
main reference document to develop programs in Python for Telit modules.

In general you need to consider that a Python script is executed in a task with the lowest
priority on the Telit module, so its execution won’t interfere with GSM/GPRS/UMTS
normal operations. Furthermore, this allows serial ports, protocol stacks etc. to run
independently from the Python script.
This also means that you can not achieve real-time applications with Python version
running on the module or you need to consider if the limitations are acceptable for your
application.

Also consider the memory limits described in the Easy script in Python user guide.

Also consider that is highly recommended to not use the module as a data logger
since all flash memories have limited number of writing and deleting cycles.

Consider that the execution speed of the scripts:

 - depends on the particular real scenario : the Python script is executed in a task with
the lowest priority on the Telit module and if GSM/GPRS/UMTS activities are running,
the Python operations will be delayed. This is a reason it is not possible to give an
absolute evaluation of the execution speed in MIPS

- depends on the embedded Python interpreter engine version; there are two versions
at present: 1.5.2+ and 2.7.2

- depends on the specific hardware platform (specific module) you are using: generally
“newer” modules are “faster” than modules of older platforms. Obviously the speed
execution of a Python script running on the module and the speed execution of the
equivalent Python script running on your PC are not comparable

You can compare the speed execution of different Telit platforms in the same specified
conditions with the help of identical scripts running in these different platforms. Pay
attention this will not be an absolute measurement for the reasons explained before,
also they depend on the real scenario of the test including radio network environment.

Once you have evaluated the limits and decide that it is worth to write an application in
Python for your module, then a possible way to start learning about the Python
implementation and writing Python code for Telit modules is:

- read this start guide, then

- test the sequence (or a part of it) of the AT commands you need to use in your
application, sending commands manually using a serial terminal application. This is

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 10 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

important to get an idea about the AT commands answer time,the kind of answers you
will get and the behavior of the module. “Command Timing Issues” information are
specified in the AT Commands reference guide of the product you are using or in the
Easy script in Python, but it’s better to test the commands in a real environment in order
to write a good code

- develop first simple pieces of Python code for your application or start by trying some

of the Telit_Python_Examples which are available in the Telit Download zone of Telit
website (if you are not our direct customer, please ask your distributor to provide them
for you or contact the Telit Technical Support)

- upload the (eventually compiled) scripts, run and debug the scripts in the module, not
in emulation mode (emulation mode means Python script running on PC and
communicating to the module via a serial port).
Keep in mind that there are several significant differences between the Python engine
installed in the module and the Python environment installed on your PC (look at Python
standard functions chapter in the Easy script in Python user guide) and therefore the
same code can behave differently. This also means that a code running on PC might
not run on the module and viceversa.

2.2 Python script references for Telit modules

- The Easy Script in Python user guide for the Python interpreter engine embedded in

the module you are using. These documents are available in the Downloads section of
the page of the product at www.telit.com web site. There are two documents at the
moment:

• Easy Script in Python (for 1.5.2+)
and

• Easy Script in Python 2.7

- The AT commands reference guide of the product you are using

- The Telit_Python_Examples zip file package (that contains Python272LibPC

Emulation modules needed to compile your scripts). Contact your distributor or Telit
Technical Support Center (TTSC) to get the package.

- The Telit_Virtual_Serial_Device_Application_Note_r0.pdf for products based on

1.5.2+ Python interpreter version to avoid possible resources conflicts

- the Telit_HE910_UE910_Family_Ports_Arrangements based on 2.7.x Python
version

- the Telit_GE910_Family_Ports_Arrangements based on 2.7.x Python version

- the Telit Technical Forum

- References about the Python language:

e.g.:
• the manuals for Python language available with PythonWin IDE and the

immense resources available in Internet
• it may be useful also to test single instructions through Interactive window of

the Pythonwin tool

- Other Telit user guides that can be useful in your application, available on Telit web
page of the products or in the Telit Download zone (ask your distributor)

http://www.telit.com/

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 11 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3 INSTALL, EDIT, COMPILE,
DOWNLOAD, RUN AND DEBUG A
PYTHON SCRIPT

Requirements:

• PC with serial and USB ports
• A module with python engine mounted on a board or starter kit with at least a serial port

with hardware flow control lines available (a second serial port or USB is needed in
order to debug scripts)

• Terminal emulation application (e.g. hyperterminal)
• Connect your module board or starter kit with a serial cable to your PC,start your serial

terminal application and try the first contact sending the command AT<Carriage
Return>. You should receive an “OK” as an answer.

 <Carriage Return> is the command line terminator character (decimal 13,
 hexadecimal 0x0D) is usually sent hitting the „Enter“ key on the keyboard.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 12 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.1 Install the Python release

It is useful to install the Python release on your PC with the same version of the Python
interpreter engine embedded in the module. This is necessary to edit and compile in a
fast way the source code of the .py files thus obtaining compiled files on PC that can
be downloaded later in the module (but we suggest again to avoid debugging the .py
scripts running on PC in emulation mode for the reasons written above).
However, after Python package installation, other applications can be used to edit script
files if prefered, from simple ones such as Pspad to Eclipse, and the compiling stage
can be implemented in batch files.

3.1.1 Modules with 1.5.2+ Python interpreter version embedded

You need to install the Telit Python package TelitPy1.5.2+_V4.1
Contact your distributor or Telit Technical Support to get the package.

3.1.2 Modules with 2.7.2 Python interpreter version embedded:

Look at
http://www.python.org/download/releases/2.7.2/
and download the package for your PC

3.1.3 Main changes in the Python interpreter from 1.5.2+ to 2.7.2 version

This paragraph summarizes, not exhaustively, some changes implemented in version 2.7.x which
runs in more recent platforms, related to Python interpreter version 1.5.2+, supported in Elite and
Xgold platforms,.
What is declared supported or not supported in this paragraph is related to 2.7.2 version.
This paragraph can be useful if you think to adapt your code developed for 1.5.2+ version to new
platforms supporting 2.7.2 version.
For other details refer to Easy script in Python 2.7 and Easy script in Python (for modules with
1.5.2+) user guides.

3.1.3.1 Python INTERPRETER VERSION
The Python 2.7.2 version implemented in Telit modules is a subset of the complete original engine:
core Python language is supported almost entirely, only a few but essential standard Python modules
are supported, and other specialized custom built-in modules are added.
Python .pyc compiled files are supported.
Python .pyo compiled files are not supported.

3.1.3.2 Python SCRIPTS EXECUTION SPEED
2.7.2 version has increased Python scripts execution speed compared to 1.5.2+ version.

3.1.3.3 float NUMERIC TYPE
Standard floating point numeric type (float) is supported.
Standard complex numeric type (complex) is not supported.

3.1.3.4 NON STANDARD BUILT-IN METHODS
Non standard built-in methods

http://www.python.org/download/releases/2.7.2/

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 13 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

- unlink
- rename
- flashflush
are not implemented.

3.1.3.5 posix MODULE
Standard posix Python module is partially supported.
Instead of non standard built-in unlink method use posix.unlink method.
Instead of non standard built-in rename method use posix.rename method.

3.1.3.6 MOD MODULE (only available from version 12.00.xx4 and version
13.00.xx5)

Custom built-in MOD module provides the following methods only:
MOD.watchdogEnable(timeout)
MOD.watchdogReset()
MOD.watchdogDisable()
MOD.powerSaving(timeout)

3.1.4 time MODULE

Standard time Python module is partially supported.
Only time, clock and sleep methods are supported.

Instead of custom MOD.secCounter method use time.time or time.clock methods.
Take care that time.time and time.clock methods return a float.
Instead of custom MOD.sleep method use time.sleep method.
Take care that time.sleep argument is in seconds and is a float.

3.1.4.1 MDM MODULE
Custom built-in MDM module is implemented.
MDM module continues to work on the AT0 parser instance.
MDM.receive method is not implemented.
Instead of MDM.receive method use MDM.read asynchronous method. To achieve a behavior
equivalent to MDM.receive you can use MDM.read inside a loop that tests the time elapsed since
start of procedure and read characters sent by the user in each iteration.
Pseudo code example:

set time at start of procedure
set data read from MDM buffer to empty
while (condition to exit the loop based on data read from MDM buffer not
fulfilled) and (elapsed time since
start of procedure not expired):

update data read from MDM buffer using MDM.read method
update elapsed time since start of procedure
sleep (optional)

MDM.receivebyte method is not implemented.
Instead of MDM.receivebyte method use MDM.readbyte method inside a while loop.
MDM.sendavail is a new method that returns free space available in bytes in MDM send
buffer.

3.1.5 MDM2 MODULE

Custom built-in MDM2 module is implemented.
MDM2 module continues to work on the AT1 parser instance.
MDM2.receive method is not implemented.
Instead of MDM2.receive method use MDM2.read method inside a loop.
MDM2.receivebyte method is not implemented.
Instead of MDM2.receivebyte method use MDM2.readbyte method inside a while loop.
MDM2.sendavail is a new method that returns free space available in bytes in MDM2 send
buffer.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 14 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.1.5.1 SER MODULE
Custom built-in SER module is implemented.
SER module continues working on USIF0.
SER.receive method is not implemented.
Instead of SER.receive method use SER.read method inside a loop.
SER.receivebyte method is not implemented.
Instead of SER.receivebyte method use SER.readbyte method inside a while loop.
SER.sendavail is a new method that returns free space available in bytes in SER send
buffer.

3.1.5.2 SER2 MODULE (only available from version 12.00.xx4, version
13.00.xx5)

Custom built-in SER2 module provides the following methods only:

SER2.send(string)
SER2.read()
SER2.sendbyte(byte)
SER2.readbyte()

3.1.5.3 USB0 MODULE (only available from version 12.00.xx5 and version
13.00.xx6)

Custom built-in USB0 module provides the following methods:

USB0.send(string, <timeout>)
USB0.read()
USB0.sendbyte(byte, <timeout>)
USB0.readbyte()
USB0.sendavail()

3.1.5.4 GPS MODULE
Custom built-in GPS module is implemented.
The following GPS methods are not implemented:

- resetMode
- getAntennaVoltage
- getAntennaCurrent
- powerSavingMode
- powerSavingWakeUp

3.1.5.5 IIC MODULE (only available from version 12.00.xx4, version
13.00.xx5)

Custom built-in IIC module provides the following methods only:

IIC.new(SDA_pin, SCL_pin, ADDR)
init()
readwrite(string, <read_len>)

3.1.5.6 SPI MODULE (only available from version 12.00.xx4 and version
13.00.xx5)

Custom built-in SPI module provides the following methods only:

SPI.new(SCLK_pin, MOSI_pin, MISO_pin, <SS0>,<SS1>,…,<SS7>)
init(CPOL, CPHA, <SSPOL>, <SS>)

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 15 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

readwrite(string, <read_len>, <SS>)

3.1.5.7 md5 MODULE
Standard md5 Python module in Python 2.7.x is deprecated.
Instead of standard md5 module use the standard hashlib.py module that is written in Python
and imports standard _md5 module.
Standard _md5 Python module is supported.

3.1.5.8 CMUX
If CMUX is active Python scripts do not start.
AT command AT#CMUXSCR is not implemented.

3.1.5.9 File Objects
Please refer to File Object section of Easy script in Python 2.7

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 16 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.2 Install Python editor

As said before consider that any text editor of your choice be used as Python editor,
but text editors that are able to check the Python’s syntax are useful to avoid errors
during compilation of .py source files.
You can find many Python editors on the web.
Again - we suggest to edit the source code, compile, download the compiled file into
the module, then run and debug the Python script running on the module, not in your
development environment in emulation mode. So it doesn’t matter if the editor has a
debug feature included, which is only useful to debug Python scripts running on PC.

E.g. for Windows OS you may use the PythonWin IDE as indicated below.

3.2.1 Modules with 1.5.2+ Python interpreter version embedded:

The PythonWin IDE is included in the Telit Python package TelitPy1.5.2+_V4.1
Contact your distributor or Telit Technical Support Center (TTSC) to get the package.

The PythonWin for 1.5.2+ version provides "Compile" and “Download” option added to
the contextual menu accessible by right clicking on the selected Python script to
compile. The Compile option works as default only for 1.5.2+ version.

3.2.2 Modules with 2.7.2 Python interpreter version embedded:

Download PythonWin installation related to Python 2.7 from
http://sourceforge.net/projects/pywin32/files/pywin32/
and install it. Please refer to Install optional serial package section of the Easy script in
Python 2.7 user guide for other details. Keep in mind that when want to install additional
packages in your Python environment you have to pick a release of the module
compatible with your Python engine (for instance if you installed a 32bit Python engine
you have to install the 32bit release of the module).
Pay attention that PythonWin for 2.7 version doesn’t have the Compile option and
Download option when you select a file and click on the right key of the mouse. It is
possible to manually add a Compile option by changing a PC registry entry. Please
look in the Compile the py scripts section of this guide.

http://sourceforge.net/projects/pywin32/files/pywin32/

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 17 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.3 Edit the source code

Edit the source code with a dedicated editor. It is useful to check the syntax of the code
before compiling it. E.g. PythonWin editor has a “Check” button for this purpose in the
menu bar or it’ is possible to use Ctrl+Shift+C keyboard shortcut. See the example
below written for 2.7.2 Python version.

In this picture above, an error is displayed after the “Check” button was pressed.
The error is displayed, because “a = SER.send('TEST\r\n')” is not correctly indented.
In the bottom picture, the syntax error was corrected and the check operation reports a message
“Successful”.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 18 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

Place sufficient print instructions in relevant points in the source code to have your
customized debug output.
To visualize these print messages, you must have access to the debug port. Look at in
the “Configure debugging” section in this document.

As an alternative (or in combination with print) you can use the SER.send method to
visualize your debug messages on the AT commands port (ASC0 or USIF0 or USB0
for Python modules), but with this strategy it is not possible to capture exceptions logs
of messages of premature script stop which are only sent to the debugging port.
Furthermore, in case you want to use SER for debugging, there may be some
incompatibilities with particular AT commands (e.g. #SMSATRUN). Look at the HE
Family Ports Arrangements user guide and AT Commands reference guide

Another alternative is to redirect print statements to AT commands port (ASC0 or USIF0
or USB0 for Python modules). In this case you can also capture some exception
messages if any exception occurs. See the “Configure debugging” section in this
document about how to obtain this.

Before compiling the script, check a last time the syntax correctness .

If you have both PythonWin versions installed, pay attention which one you are using
in the View Interactive Window option of the menu.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 19 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.4 Compile the scripts (py files)

As written in the Easy Script user guide, compiling is an optional operation, but compiling the Python
script on PC before downloading to module saves time in Python script execution start.

3.4.1 Modules with 1.5.2+ Python interpreter version embedded:

3.4.1.1 From Command Prompt

Please refer to section “Compiling the Python script” of the Easy Script in Python user
guide for 1.5.2+ engine or alternatively you can use the following method using
Command Prompt:

After you have installed the Telit Python package TelitPy1.5.2+_V4.1 on your PC,

to compile all the .py files in your working directory:

cd <python.exe directory path>
python -v -S -OO “<python.exe directory path >\Lib\compileall.py" -l –f "< working
directory path >"

To compile a single .py file in your working directory:

cd <python.exe directory path>
python -v -S -OO “<python.exe directory path >\Lib\Dircompile.py" "<file
path\filename>"

e.g.
if the <python.exe directory path> is named C:\Program Files\Python152+ and <
working directory path> is C:\MyPythonExamples , then, to compile all files in the
working directory, you need to type and execute in Command Prompt:

cd C:\Program Files\Python152+
python -v -S -OO "C:\Program Files\Python152+\Lib\compileall.py" -l -f
"C:\MyPythonExamples"

or, if the file to compile is named myfile.py,

python -v -S -OO "C:\Program Files\Python152+\Lib\Dircompile.py"
"C:\MyPythonExamples\myfile.py"

Please verify that in your working directory the corresponding pyo files have been
generated after compilation of the .py files.

3.4.1.2 Using the Compile option from the contextual menu

If you install PythonWin 4.1 for 1.5.2+ environment, a "Compile" option is added to the
contextual menu accessible by right clicking on the selected Python script to compile.
This option compiles the file and saves the results in the same directory with a *.pyo
extension.
Please refer to section “Compiling the Python script” of the Easy Script in Python user
guide

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 20 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.4.2 Modules with 2.7.2 Python interpreter version embedded:

3.4.2.1 From Command Prompt

From the Easy script in Python 2.7 user guide:

The following procedure allows to compile .py Python files into .pyc Python compiled
files:

after you have installed Python version 2.7.2 on your PC (as an example in directory
C:\Python27):

to compile all the .py files in your working directory:

cd <python.exe directory path>
python -v -S “<python.exe directory path >\Lib\compileall.py" -l –f “< working directory
path >”

or

python -v -S .\Lib\compileall.py -l –f “< working directory path >”

To compile a single .py file in your working directory::
python -v -S “<python.exe directory path >\Lib\compileall.py" -l –f “< file path\file
name>”

Please verify that in your working directory the corresponding pyc files have been
generated after compilation of the .py files.
Below a screenshot of the output of this operation, where the <python.exe directory>
is the C:\Python27 and <working directory path> is C:\MyPythonExamples

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 21 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.4.2.2 Using the Compile option from the contextual menu

If you install the 2.7.2 version only, there is no "Compile" option added to the contextual menu
accessible by right clicking on a Python script. But it is possible to create it in this way:

- Launch “regedit” from the Windows Run window

- Navigate to and select the HKEY_CLASSES_ROOT\Python.File\shell key

- Create two keys e.g.: Compile27-2 and command

- You will get a situation similar to the one below :

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 22 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

- In HKEY_CLASSES_ROOT\Python.File\shell\Compile27-2\command key sub-

group create and associate the following String Value:

"C:\Python27\python.exe" -v -S "C:\Python27\Lib\compileall.py" -l -f "%1"

Then:

- select (click) the Python script to compile

- right click on the mouse

- a contextual menu appears and you can see a similar situation :

If you select Compile27-2 option the file will be compiled according to Python 2.7.2 rule

In the screenshot above there is also the “Compile” option, because also the

Python 152+ version has been installed on the same machine. But in this case in

 HKEY_CLASSES_ROOT\Python.File\shell\Compile\command key,

the following String Value is associated:
"C:\Program Files\Python152+\python.exe" -v -S -OO "C:\Program

Files\Python152+\Lib\Dircompile.py" "%1"

3.4.2.3 Compiling under Linux environment

Install Python 2.7.2:
cd /opt
mkdir Python_272
cd Python_272

wget http://legacy.python.org/ftp//python/2.7.2/Python-2.7.2.tgz

tar -zxvf Python-2.7.2.tgz

cd Python-2.7.2

./configure
make
make install

Compile file:
cd < py file path >
python2.7 -m py_compile <py file name>

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 23 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.5 Download the files from PC to the module

Please refere to the section Download the Python script in the Easy script in
Python user guide (according to the Python script interpreter version embedded
in your module) for a general script downloading method.

Basically you should use the following AT command:

AT#WSCRIPT=“<script_name>“,<size>[,<know-how>]

where:

<script_name>: file name
<size>: file size (number of bytes)
<know-how>: (optional) know how protection, 1 = on, 0 = off (default)

Before sending this command, it is obviously needed to have one of the AT
command ports of the module (ASC0 or USIF0) connected to a COM port at PC side.

For a successful transfer of the files with of big size it’ is necessary that all the
hardware flow control lines are available at module side and connected along RX and
TX lines.
When the size of the file exceeds the size of the serial buffer of the module you risk to
loose data without hardware flow control implemented.
In case you can not implement a hardware flow control a possible strategy, but
without the guarantee of success in all cases, is to implement via a software a routine
that you need to tune yourself , in a similar way as presented below:

1. Issue AT#WSCRIPT command with the right size

2. Send chunks of the file (e.g.1000 bytes for each block) to the serial port . The
data arrive in the serial buffer before to be transferred to the module flash
memory

3. wait for x seconds (e.g. 10 seconds, you need to tune this time with tests) to
allow the module to transfer (write) the data from the serial buffer to the flash
memory

4. repeat the steps 2 and 3 until you receive the “OK” string (the declared

number of bytes have been written in the flash, otherwise you will get an
error after a timeout]

You can find some other software tools in internet useful to download Python scripts
along Telit supplied tools.

3.5.1 File downloading using Telit AT Controller tool

Hereinafter you can find some screenshots related to the use of Telit AT controller
tool.
Contact your distributor or Telit Technical Support to get the package.

Select Hardware – Handshaking option as in the screenshot below:

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 24 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

Then you must send the command at#wscript with the name and size of the file to
transfer

 then select theTransfer option to select and transfer the desired file from PC to the
module:

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 25 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

Check that the files are transferred to the module successfully (name and size) with
at#lscript command. Otherwise you should consider if you need to implement
hardware flow control if is not yet done.

In case the hardware flow control lines are not available, you can still try to transfer
the file by setting Flow Control to Flow off in the Setting window.

In this case the “>>>” string might not appear after at#wscript. Anyway you can

proceed with the file transfer before an internal timeout expires (at expiring of

the timeout you would receive an ERROR answer).

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 26 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.5.2 File downloading using contextual menu

Hereinafter is also described a method for script downloading if the Telit Python
package TelitPy1.5.2+_V4.1 has been installed .
After this package has been installed there is a "Download" option added to the
contextual menu accessible by right clicking on a Python script.
It is necessary to have the module hardware flow control lines available and
connected, eventually through a level translator, to the controller (PC or micro). The
EVK2 already has an integrated RS232 level translator.

It is possible to verify which program is associated with this action:

- launch “regedit” from the Windows Run window

- navigate to and select the
HKEY_CLASSES_ROOT\Python.File\shell\Download\command key

- read the String Value associated . It should be:

"C:\Program Files\Python152+\python.exe" "C:\Program
Files\Python152+\Lib\directDwnld.py" "%1"
So directDwnld.py is the file that has the task to download the file to the module
through the selected serial port .

Put a RS232 cable between the upper port on EVK2 (PROG) and the COM port on
the PC,
to access AT command port of the module (ASC0 or USIF0).
If your PC is not provided with a COM port, you can use a USB to RS232 adapter.

Note: The EVK2 board comes with 2 DB9 serial ports (PROG/DATA). If you use a
RS232 cable between PC and EVK2, pay attention to select the position with label
“RS232” of the jumpers on EVK2 instead of position with label “USB” (look at
“Telit_EVK2_User_Guide.pdf” on www.telit.com)

With PythonWin IDE for 1.5.2+ version, you need to use the Telit COM portSelection
Tool (available from Start menu- All Programs-Telit Python 1.5.2+ Package) to set the
desired PC COM port for script downloading (e.g. in the screenshot below it is the
COM1).
This port must be available with all the hardware flow control physical lines, not with TX
and RX lines only.

http://www.telit.com/

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 27 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

• In case you are using a module with USB port embedded (HE or GE families), you need
to refer to HE or GE “Family Ports Arrangements” user guide to choose and configure
the correct COM port mapped on USB port.

• Connect the EVK2 evaluation kit board to the power supply
• Power on the module

Then, according to the module’s Python interpreter version embedded:

• Select (clicking on) the pyo/pyc file to download, clicking the right key button of the
mouse and select the Download option as the right as in the screenshot below

• after the downloading, issue send an ATE1 command to enable echo, if necessary
• Check that the pyo/pyc file is in the module after downloading with AT#LSCRIPT

command
• Arrange to don’t have any Do not use .py file in the module’s NVM, because the real

execution of the .py Python script is delayed from the power on due to the time needed
by Python engine to parse the script. The larger is the script, the longer is this delay.
The execution of .pyo/.pyc compiled Python script is faster because there is no parsing
of the script.

• In case there are py files in NVM, and if they are not necessary for your application
because you have already stored the corresponding pyo/pyc files, delete the py files
only with the command AT#DSCRIPT

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 28 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

If the downloading operation will have success succeeded you will get a similar
situation a message as below:

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 29 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.6 Enable the script

3.6.1 Modules with 1.5.2+ Python interpreter version embedded:

Enable the script you have downloaded in the module with the command at#escript
(e.g. at#escript=”SERtest_30. pyo”) .
Please refer to section “Enable the Python script “of the Easy Script in Python user
guide

3.6.2 Modules with 2.7.2 Python interpreter version embedded:

Enable the script you have downloaded oin the module with the command at#escript
(e.g. at#escript=”SERtest_30. pyc”) .
Please refer to section “Enable the Python script “of the Easy Script in Python 2.7 user
guide

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 30 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.7 Run the python script

Please refer to section “Enable the Python script “of the Easy Script in Python user
guide

Run your script in one of the following ways:

- at switch on module startup, according to with the DTR line status (if
at#startmodescr=0)
- at switch on module startup, regardless of the DTR line status (if
at#startmodescr=1 or 2)
- on at user choice command, with at#execscr command (maybe better the best
method during debug)

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 31 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.8 Configure debugging

The script debug is a process aimed to search and discover the errors and undesirable
behaviors of the code and fix them in order to get correct compilation and run.

Here it’ is suggested to avoid to debug the Python script in the PC emulated
environment of
the Telit Python Package, that means running the Python script on PC connected to the
module. In fact it may happen that the same script running in the emulated environment
could not run in the module.
Many error messages could can result from because of the differences existing between
the Python environment embedded in the module and the Python environment in the
PC.

The suggested approach to debug Python scripts is to observe the debug messages
while the script is running on the module.
Before To get these debug messages you need to decide which what will be your
debugging port and consequently which what kind of code you need to write in Python
to get the debugging messages on from the selected port and which what kind of AT
commands you need to use to configure the debugging.

3.8.1 Modules with 1.5.2+ Python interpreter version embedded:

Please refer to “Debug Python script” of the Easy Script in Python user guide for further
details.

For most of these modules the debugging port is the ASC1 (auxiliary) port, except for
GPS modules (in this case you need to use the Telit Serial Port Mux application).

But you could can also decide to use the ASC0 port as debugging port, with some
limitations.

3.8.1.1 Using ASC1 as debug port

In case you decide to use the ASC1 (auxiliary) port and the module is not a GPS
enabled module, you need to put more print instructions in the parts of the source code
that you consider as critical, to get later a flow of your customized debug messages
when the script is running.

From an hardware point of view, to see the messages on the second serial port ASC1
it’s it is necessary to connect the ASC1 port pins available on your module to the PC
COM port, through a level translator as described in the HW user guide of the product
you are using.
Pay attention that if you are using a module on its adapter board mounted on EVK2,
the level translator is already included in EVK2.

In case you are using a GPS enabled module, you need to use physically the port
ASC0 port and CMUX features and you will get the print debug messages of the print
instructions on from the fourth virtual port.Look at the section Using ASC0 as debug
port

3.8.1.2 Using ASC0 as debug port

In case decide to use the ASC0 port as debugging port (e.g. the ASC1 port is not
available on your board), you have three ways to get customized messages:

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 32 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

1. use the SER.send() method in your source code
2. Redirect print statements and errors to ASC0
3. use Telit Serial Port Mux application

1. It’s possible to use the SER.send() method to send to ASC0 (AT commands
port) your debug messages alternatively or in combination with print outputs
coming on ASC1 port

Look at the following Source code snippet:

"""
SERtest30.py
This script sends a text string 'TEST' to the serial
port (ASC0) and text string '1' to the debug port
 every 0.5s for 30 times
"""
import MOD
import SER

SER.set_speed('115200','8N1')

 for i in range(30):
 MOD.sleep(5)
 a = SER.send('TEST\n')
 print a

SER.send('END of script\n')

After that the corresponding compiled file SERtest_30.pyo file has been
enabled and after AT#EXECSCR command has been issued, this example
should print a series of “TEST” string on the port associated with AT command
port (ASC0) and a series of “1” on the debug port (ASC1). The response “1” on
debug port is resulting from successful “SER.send” operations.

You have to consider that if you have some errors during execution, not
managed by your code, the related Python error messages will be visible on
the Python debug port only, that is the port where the print outputs come.
In fact on ASC1 port you can see all Python outputs to stdout and stderr.

So in case ASC1 port is not available in your application and you are using only
the SER.send() method to send your debugging messages to ASC0 only, if the
script stops prematurely due to not managed exceptions, you can not see any
Python error information coming on ASC0 port. But Nevertheless these info
sometimes may be necessary to understand the reason for the stop. In this
case, it’s it is possible to:

2. redirect print statements and errors to ASC0

 Look at the following Source code snippet:

"""
traceonSER.py
24/01/08|Sgo|bt|1st ver
Redirect print statements and errors to SERIAL ASC0
"""
import sys
import SER

class SERstdout:

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 33 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

 def __init__(self):
 SER.set_speed("115200","8N1")
 def write(self,s):
 SER.send("DEBUG> " + s+'\n')

print "hello on debug port!"

if(sys.platform != "win32"):

sys.stdout = SERstdout() # Redirect print
statements

 # to SERIAL ASC0
 sys.stderr = SERstdout() # Redirect errors

 #to SERIAL ASC0

print "hello on serial port!"

3. use Telit Serial Port Mux application

In case you are using a GPS enabled module, you need to use physically the
port ASC0 port and CMUX features and you will get the print debug messages
of the print instructions on from the fourth virtual port.Look at the section Using
ASC0 as debug port

In respect to with the method described in the section “Debug Python script on
GPS modules using CMUX” of the Easy Script in Python user guide, an
alternative method to get these messages is the following:

• run Telit Serial Port Mux application
• open and connect one terminal emulator session to the COM port number

corresponding to first Virtual port (to send AT commands) and one terminal
session to the fourth Virtual port (debug port)

• issue send the following AT commands at#selint=2, at#cmuxscr=0,
at#startmodescr=0 on to the first Virtual port

• Disconnect the terminal emulators if still connected to the Virtual COM ports
• Switch off the module and switch on the module to enable the new

startmodescr setting
• reconnect the terminal sessions to the above virtual COM ports
• issue on Send with a terminal session connected to first Virtual port:

at#escript=”<filename>.pyo”
• issue send at#execscr command to start the execution of the enabled script
• you should observe the debug output (if you have not re-forwarded the print

outputs) on in the terminal session connected to the fourth virtual port

3.8.2 Modules with 2.7.2 Python interpreter version embedded:

Please refer to section “Debug Python script” of the Easy Script in Python 2.7 user guide
for further details.

For most of these modules the debugging port is the USIF1 (auxiliary) port.
For some modules is necessary to set the command AT#PORTCFG=3 , for others
AT#PORTCFG=0 , before to see the debug messages coming on USF1.

But You could can also decide to use the USIF0 or USB0 port as debugging port, with
some limitations.

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 34 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

3.8.2.1 Using USIF1 as debug port

In case you decide to use the USIF1 (auxiliary) port, you need to put more print
instructions in the parts of source code that you consider as critical, to get later a flow
of your customized debug messages when the script is running.

From an hardware point of view, to see the messages on the second serial port USIF1
it’s it is necessary to connect the USIF1 port pins available on your module to the PC
COM port, through a level translator as described in the HW user guide of the product
you are using.
Pay attention that if you are using a module on its adapter board mounted on EVK2,
the level translator is already included in EVK2.

3.8.2.2 Using USIF0 as debug port

In case you decide to use the USIF0 port as debugging port (e.g. the USIF1 port is not
available on your board), you have two ways to get customized messages:

1. use the SER.send() method in your source code
2. Redirect print statements and errors to USIF0

1. It’s It is possible to use the SER.send() method to visualize on USIF0 (AT
commands port) your debug messages alternatively or in combination with print
outputs coming on USIF1 port

Source code example:

After that the corresponding compiled file SERtest_30.pyc file has been
enabled and after AT#EXECSCR command has been issued, what you should
observe on USIF0 is the following:

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 35 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

This example should print a series of “TEST” string on the port associated with
AT command port (USIF0) and a series of “1” on the debug port (USIF1). The
response “1” on debug port is resulting from successful “SER.send” operation.

You have to consider that if you have some errors during execution not
managed by your code, the related Python error messages will be visible on
the Python debug port only, that is the port where the print outputs come.
In fact you can see on USIF1 port you can see all Python outputs to stdout and
stderr.

So in case USIF1 port is not available in your application and you are using
only the SER.send() method to send your debugging messages to USIF0 only,
if the script stops prematurely due to not managed exceptions, you can not see
any Python error information coming on USIF0 port. But Nevertheless these
info sometimes may be necessary to understand the reason for the stop. In
this case, it’s it is possible :

2. redirect print statements and errors to USIF0

 Look at the following Source code snippet:

"""
traceonSER.py
24/01/08|Sgo|bt|1st ver
Redirect print statements and errors to SERIAL USIF0
"""
import sys
import SER

class SERstdout:
 def __init__(self):
 SER.set_speed("115200","8N1")
 def write(self,s):
 SER.send(s)

print "hello on debug port!"

if(sys.platform != "win32"):

sys.stdout = SERstdout() # Redirect print
statements

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 36 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

 # to SERIAL USIF0
 sys.stderr = SERstdout() # Redirect errors

 #to SERIAL USIF0

print "hello on serial port!"

3.8.2.3 Using USB0 as debug port

The USB0 built-in module is an interface between the Python core and the first mini
USB port USB0.
The USB0 interface lets the Python script to read from and write to the first mini USB
port USB0.

NOTE:

USB0 built-in module is available only for product versions from 12.00.xx5
and from 13.00.xx6.

To see which is the virtual COM port where the USB0 channel is mapped, please read
the following user guides, available on product web page, according to with the product
used:

Telit_HE910_UE910_Family_Ports_Arrangements
Telit_GE910_Family_Ports_Arrangements

In case you decide to use the USB0 port as the debugging port (e.g. you only have only
the USB port available on your board), you have two ways to get customized
messages:

1. use the USB0.send() method in your source code
2. Redirect print statements and errors to USB0

1. It’s It is possible to use the USB0.send() method to visualize on USB0 (AT
commands port) your debug messages alternatively or in combination with print
outputs coming on USIF1 port

Look at the following source code snippet:

"""
USB0test_30.py
10/01/14|Sgo|lt|1st ver
This script sends a text string 'TEST' to the to the first
mini USB port USB0 every 1 second.
built-in module USB0 only available from version 12.00.xx5
and version 13.00.xx6
"""

import time
import USB0

print 'USB0test_30.py\r\n© 2014 Telit Communications\r'

 for i in range(30):

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 37 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

 time.sleep(1)
 a = USB0.send('TEST\r\n')
 print '%d\r' % a

USB0.send('END of script\n')

After that the corresponding compiled file USB0test_30.pyc file has been
enabled and after AT#EXECSCR command has been issued, what you should
expect to see is that you can see a series of “TEST” strings on the COM port
associated to the first mini USB port USB0, whereas you will see and a series
of “1” on the debug port (USIF1). “1” is the value returned by the USB0.send
method if no error occurred during operation.

You have to consider that if you have there are some errors during execution,
not managed by your code, the related Python error messages will be visible
on the Python debug port only, that is the port where the print outputs come.
In fact you can see on the USIF1 port you can see all Python outputs to stdout
and stderr.

So in case USIF1 port is not available in your application and you are only using
only the USB0.send() method to send your debugging messages to USB0 only,
if the script stops prematurely due to not managed exceptions, you can not see
any Python error information coming on USB0 port. But Nevertheless these info
sometimes might be necessary to understand the reason for the stop. In this
case, it’s it is possible :

2. redirect print statements and errors to USB0

 Look at the following code Source code snippet:

"""
printonUSB0.py
10/01/14|Sgo|lt|1st ver
Redirect print statements and errors to the first mini USB
port USB0.
built-in module USB0 only available from version 12.00.xx5
and version 13.00.xx6
"""
import sys
import USB0

class USB0stdout:
 def __init__(self):
 #print "object inizialization\r"
 Pass #Method definition cannot be empty
 def write(self,s):
 USB0.send(s)

print "print output on debug port!"

if(sys.platform != "win32"):

sys.stdout = USB0stdout() #Redirect print
#statements to the
first #miniUSB port
USB0

sys.stderr = USB0stdout() # Redirect errors to
the #first miniUSB
port USB0

print "print output on serial port!"

TELIT PYTHON START GUIDE 80000ST10700A Rev.0 • 2015-06-09 38 of 39

Reproduction forbidden without Telit Communications PLC written authorization – All Rights Reserved

4 DOCUMENT HISTORY

Revision Date Changes

0 2015-06-09 First issue

Mod. 0809 2015-02 Rev.0

This image cannot currently be displayed.

	Applicability table
	SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
	Contents
	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 Contact Information, Support
	1.4 Text Conventions
	1.5 Related Documents

	2 Before to start…
	2.1 Considerations about Python limits for Telit modules
	2.2 Python script references for Telit modules

	3 Install, edit, compile, download, run and debug a Python script
	3.1 Install the Python release
	3.1.1 Modules with 1.5.2+ Python interpreter version embedded
	3.1.2 Modules with 2.7.2 Python interpreter version embedded:
	3.1.3 Main changes in the Python interpreter from 1.5.2+ to 2.7.2 version
	3.1.3.1 Python INTERPRETER VERSION
	3.1.3.2 Python SCRIPTS EXECUTION SPEED
	3.1.3.3 float NUMERIC TYPE
	3.1.3.4 NON STANDARD BUILT-IN METHODS
	3.1.3.5 posix MODULE
	3.1.3.6 MOD MODULE (only available from version 12.00.xx4 and version 13.00.xx5)

	3.1.4 time MODULE
	3.1.4.1 MDM MODULE

	3.1.5 MDM2 MODULE
	3.1.5.1 SER MODULE
	3.1.5.2 SER2 MODULE (only available from version 12.00.xx4, version 13.00.xx5)
	3.1.5.3 USB0 MODULE (only available from version 12.00.xx5 and version 13.00.xx6)
	3.1.5.4 GPS MODULE
	3.1.5.5 IIC MODULE (only available from version 12.00.xx4, version 13.00.xx5)
	3.1.5.6 SPI MODULE (only available from version 12.00.xx4 and version 13.00.xx5)
	3.1.5.7 md5 MODULE
	3.1.5.8 CMUX
	3.1.5.9 File Objects

	3.2 Install Python editor
	3.2.1 Modules with 1.5.2+ Python interpreter version embedded:
	3.2.2 Modules with 2.7.2 Python interpreter version embedded:

	3.3 Edit the source code
	3.4 Compile the scripts (py files)
	3.4.1 Modules with 1.5.2+ Python interpreter version embedded:
	3.4.1.1 From Command Prompt
	3.4.1.2 Using the Compile option from the contextual menu

	3.4.2 Modules with 2.7.2 Python interpreter version embedded:
	3.4.2.1 From Command Prompt
	3.4.2.2 Using the Compile option from the contextual menu
	3.4.2.3 Compiling under Linux environment

	3.5 Download the files from PC to the module
	3.5.1 File downloading using Telit AT Controller tool
	3.5.2 File downloading using contextual menu

	3.6 Enable the script
	3.6.1 Modules with 1.5.2+ Python interpreter version embedded:
	3.6.2 Modules with 2.7.2 Python interpreter version embedded:

	3.7 Run the python script
	3.8 Configure debugging
	3.8.1 Modules with 1.5.2+ Python interpreter version embedded:
	3.8.1.1 Using ASC1 as debug port
	3.8.1.2 Using ASC0 as debug port

	3.8.2 Modules with 2.7.2 Python interpreter version embedded:
	3.8.2.1 Using USIF1 as debug port
	3.8.2.2 Using USIF0 as debug port
	3.8.2.3 Using USB0 as debug port

	4 Document History

