

QC Linux USB Driver - User Guide
 1vv0300804 r5 11/19/2013

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 2 of 22

Disclaimer

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice
While reasonable efforts have been made to assure the accuracy of this document, Telit
assumes no liability resulting from any inaccuracies or omissions in this document, or from
use of the information obtained herein. The information in this document has been carefully
checked and is believed to be entirely reliable. However, no responsibility is assumed for
inaccuracies or omissions. Telit reserves the right to make changes to any products described
herein and reserves the right to revise this document and to make changes from time to time
in content hereof with no obligation to notify any person of revisions or changes. Telit does
not assume any liability arising out of the application or use of any product, software, or
circuit described herein; neither does it convey license under its patent rights or the rights of
others.
It is possible that this publication may contain references to, or information about Telit
products (machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that Telit intends to
announce such Telit products, programming, or services in your country.

Copyrights
This instruction manual and the Telit products described in this instruction manual may be,
include or describe copyrighted Telit material, such as computer programs stored in
semiconductor memories or other media. Laws in the Italy and other countries preserve for
Telit and its licensors certain exclusive rights for copyrighted material, including the
exclusive right to copy, reproduce in any form, distribute and make derivative works of the
copyrighted material. Accordingly, any copyrighted material of Telit and its licensors
contained herein or in the Telit products described in this instruction manual may not be
copied, reproduced, distributed, merged or modified in any manner without the express
written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed
to grant either directly or by implication, estoppel, or otherwise, any license under the
copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of
a product.

Computer Software Copyrights
The Telit and 3rd Party supplied Software (SW) products described in this instruction
manual may include copyrighted Telit and other 3rd Party supplied computer programs
stored in semiconductor memories or other media. Laws in the Italy and other countries
preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted
computer programs, including the exclusive right to copy or reproduce in any form the
copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party
supplied SW computer programs contained in the Telit products described in this instruction
manual may not be copied (reverse engineered) or reproduced in any manner without the
express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 3 of 22

of Telit products shall not be deemed to grant either directly or by implication, estoppel, or
otherwise, any license under the copyrights, patents or patent applications of Telit or other
3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that
arises by operation of law in the sale of a product.

Usage and Disclosure Restrictions

License Agreements
The software described in this document is the property of Telit and its licensors. It is
furnished by express license agreement only and may be used only in accordance with the
terms of such an agreement.

Copyrighted Materials
Software and documentation are copyrighted materials. Making unauthorized copies is
prohibited by law. No part of the software or documentation may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, without prior written permission of Telit

High Risk Materials
Components, units, or third-party products used in the product described herein are NOT
fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control
equipment in the following hazardous environments requiring fail-safe controls: the
operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air
Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its
supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High
Risk Activities.

Trademarks
TELIT and the Stylized T Logo are registered in Trademark Office. All other product or
service names are the property of their respective owners.

Copyright © Telit Communications S.p.A. 2013.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 4 of 22

Applicable Products

Product Supported

UC864-E √

UC864-G √

UC864-WDU √

UC864-WD √

UC864-E-AUTO √

UC864-K √

CC864-DUAL √

CC864-SINGLE √

CC864-KPS √

DE910-DUAL √

CE910-DUAL √

LE920 √

HE920 √

UE910-V2 √

HE910-V2 √

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 5 of 22

Contents

1 Introduction ... 6

1.1 Scope ... 6

1.2 Audience ... 6

1.3 Contact Information, Support .. 6

1.4 Product Overview .. 7

1.5 Document Organization .. 7

1.6 Text Conventions ... 8

1.7 Related Documents .. 8

1.8 Document History .. 8

2 System Setup .. 9

2.1 Linux USB Drivers Structure ... 9

2.2 Loading the drivers ... 10

2.2.1 Loading the driver: option .. 10

2.2.2 Loading the driver: qmi_wwan .. 11

2.3 Building the drivers ... 12

2.3.1 Customizing the driver: option ... 12

2.3.1.1 Additional customization for the LE920 .. 13

2.3.2 Customizing the driver: qmi_wwan ... 13

2.3.3 Compiling the drivers ... 14

3 Using the module ... 16

3.1 Using the driver: option .. 16

3.1.1 Shell commands ... 16

3.1.2 Create a PPP connection .. 16

3.1.3 C programming .. 18
3.1.3.1 open() ... 18

3.1.3.2 read() .. 19

3.1.3.3 write() ... 19

3.1.3.4 close() ... 20

3.1.3.5 Test Program .. 21

3.2 Using the driver qmi_wwan .. 22

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 6 of 22

1 Introduction

1.1 Scope
This user guide serves the following purpose:

� Provides details about UC/CC/DE/CE/LE and HE920 modems
� Explains how to compile and install the Linux USB option and qmi_wwan drivers
� Describes how software developers can use the functions of Linux device drivers to configure,

manage and use Telit modems

1.2 Audience
This User Guide is intended for software developers who develop applications using an UC/CC/DE/CE/LE
modem and Linux.

1.3 Contact Information, Support
Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions
for improvements.

For general contact, technical support, report documentation errors and to order manuals, contact Telit’s
Technical Support Center at:

TS-EMEA@telit.com
TS-NORTHAMERICA@telit.com
TS-LATINAMERICA@telit.com
TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

Telit appreciates feedback from the users of our information.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 7 of 22

1.4 Product Overview
UC864 modules contain a fully featured HSDPA modem, compatible with the other Telit GSM/GPRS
modules.

CC864 modules contain a fully featured CDMA modem compatible with the other Telit CDMA modules.

The DE910-DUAL is a dual band 1xEV-DO Rev. A 3G wireless module supporting downlink data rates up
to 3.1 Mbps and uplink data rates up to 1.8 Mbps.

The CE910-DUAL is a dual band 1x RTT wireless module supporting up/down link data rates up to
153.6kbps. It is designed to have the same form factor of its GSM/UMTS/HSPA/EVDO counterparts of the
xE910family: GE910, HE910 and DE910-DUAL.

The Telit LE920 introduces a new generation of Telit automotive grade modules. It combines two high-
speed cellular modes: LTE delivering 100Mbps downlink and 50Mbps uplink data rates and full fallback
compatibility with HSPA+ delivering up to 42Mbs downlink and 5.76Mbps uplink rates.

The Telit HE920 is a tri-band HSPA module representative of the new Telit Automotive form factor xE920.
The HE920 is a 3.5G wireless data module offering HSPA connectivity with download speeds up
to 14.4 Mbps, upload speeds up to 5.76 Mbps and manufactured under ISO TS16949.

The UE910-V2 product family is a new member of the 910 family. It offers an HSDPA module, dual-band,
designed on the xE910 LGA unified form factor. The UE910-V2 is a ”voice capable” device, featuring both
analog or digital audio, but available also as data-only variant. In addition to pin-to-pin compatibility, also
the AT command interface is fully compatible with the companion HE910 module.

The HE910 V2 modules are small, lightweight, low power consumption devices which combine the access to
digital communication services in 2G and 3G networks with Land-Grid Array (LGA) form factor.

1.5 Document Organization
This manual contains the following chapters:

• “Chapter 1, Introduction” provides a scope for this manual, target audience, technical contact
information, and text conventions.

• “Chapter 2, System Setup” describes how to setup the system before using the USB driver.

• “Chapter 3, Using the module” details USB device driver use and shows how software developers
can use it to interact with the modem through shell commands and C programming.

How to Use

If you are new to the chosen product, it is recommended to start by reading the related Hardware User Guide
and Product Description in their entirety to better understand how the modem driver works.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 8 of 22

1.6 Text Conventions
This section lists the paragraph and font styles used for the various types of information presented in this
user guide.

Format Content
Arial Linux shell commands, filesystem paths and example C source code

1.7 Related Documents
All documentation can be downloaded from Telit official web site www.telit.com if not otherwise indicated.

1.8 Document History

RReevviissiioonn DDaattee CChhaannggeess
ISSUE #0 2009-01-30 First Release
ISSUE #1 2010-01-13 Added CC864 Support

Applied new layout
ISSUE #2 2012-02-13 Added DE910 Support

New document organization
ISSUE #3 2012-06-12 Added CE910 Support
ISSUE #4 2013-02-20 Added LE920 and HE920 Support
ISSUE #5 2013-11-19 Added HE910-V2 and UE910-V2

Modified LE920 pid and interfaces

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 9 of 22

2 System Setup
In the first part of this chapter the general organization of the USB stack in Linux is described. In the second
part it is explained how to setup the system for using the module.

Please note that all the instructions provided in this guide are generic: for further information refer to the
documentation of your Linux distribution.

2.1 Linux USB Drivers Structure

USB drivers lie between the different kernel subsystems (block, net, char, etc.) and the USB hardware
controllers. The Linux USB core provides an interface for USB drivers to use and control the hardware,
without having to worry about the different types of controllers that are present on the system.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 10 of 22

The USB Core subsystem provides specific APIs to support USB devices and host controllers. Its purpose is
to abstract all hardware or device dependent parts by defining a set of data structures, macros and functions.
These functions can be grouped into an upper and a lower API layer: the upper layer APIs are used by device
drivers, while the lower APIs are used by the host controllers. When a device driver or a host controller is
loaded in Linux using the modprobe command, the USB core is also automatically loaded.

2.2 Loading the drivers

2.2.1 Loading the driver: option

Linux OS includes a generic USB driver for GSM/CDMA modems in the form of a kernel module (called
option): according to the considered kernel version it is possible that the driver should be customized for
working well with Telit modules. Refer to chapter 2.3.1 for detailed instructions.

Most recent Linux distributions do not require any user action in order to load this driver: it is enough to
simply plug the USB cable.

If the modem is recognized by the operating system some devices named /dev/ttyUSBx will be created. The
number of devices varies according to the used module. For example the UC864-G presents the following
devices:

/dev/ttyUSB0
/dev/ttyUSB1
/dev/ttyUSB2
/dev/ttyUSB3

Please note that AT commands are allowed on Modem and Auxiliary ports. Refer to the following table for
port setup details:

UC864-E, UC864-
E-AUTO, UC864-
K, UC864-WD,
UC864-WDU,
CC864-SINGLE,
CC864-KPS

ttyUSB0 → Modem port
ttyUSB1 → Diagnostic port
ttyUSB2 → Auxiliary port

UC864-G, CC864-
DUAL,

ttyUSB0 → Modem port
ttyUSB1 → Diagnostic port
ttyUSB2 → NMEA port
ttyUSB3 → Auxiliary port

DE910-DUAL,
HE920,
HE910-V2

ttyUSB0 → Diagnostic port
ttyUSB1 → NMEA port
ttyUSB2 → Auxiliary port
ttyUSB3 → Modem port

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 11 of 22

CE910-DUAL ttyUSB0 → Diagnostic port
ttyUSB1 → Modem port

LE920 ttyUSB0 → Diagnostic port
ttyUSB1 → NMEA port
ttyUSB2 → Modem port 1
ttyUSB3 → Modem port 2
ttyUSB4→ SAP port

UE910-V2 ttyUSB0 → Diagnostic port
ttyUSB1 → Auxiliary port
ttyUSB2 → Modem port

If no devices are created in your system check for the existence of the kernel module:

lsmod | grep option

If no entries are found, load the kernel module, with root privileges:

modprobe option

If an error response is returned, such as:

FATAL: Module option not found

the meaning is that the kernel module is not present in your system and it should be built. Refer to the next
chapter for generic instructions.

2.2.2 Loading the driver: qmi_wwan

The LE920 exports also a network interface that can be used when the driver qmi_wwan is available (since
the 3.4 version of the vanilla kernel). According to the considered kernel version it is possible that the driver
should be customized for working well with Telit modules. Refer to chapter 2.3.2 for detailed instructions.

If the driver is correctly loaded by the operating system a network interface named wwanx (e.g. wwan0)
will be created.

For checking the network interface presence, the ifconfig command can be used:

ifconfig –a

If no network interface is created in your system check for the existence of the kernel module:

lsmod | grep qmi_wwan

If no entry is found, load the kernel module, with root privileges:

modprobe qmi_wwan

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 12 of 22

If an error response is returned, such as:

FATAL: Module qmi_wwan not found

the meaning is that the kernel module is not present in your system and it should be built. Refer to the next
chapter for generic instructions.

2.3 Building the drivers

2.3.1 Customizing the driver: option

If the modem is not recognized by the system it is possible that the driver should be customized for working
correctly with Telit modules.

Retrieve the appropriate kernel source code version for your system (preferably with the distribution package
system, if any) and unpack/install it. From the unpacking root directory open the file:

/drivers/usb/serial/option.c

Check for the existence of the proper #define statement related to your module, according to the following
table:

UC864-E, UC864-
E-AUTO, UC864-
K, UC864-WD,
UC864-WDU

#define TELIT_PRODUCT_UC864E 0x1003

UC864-G #define TELIT_PRODUCT_UC864G 0x1004
CC864-DUAL #define TELIT_PRODUCT_CC864_DUAL 0x1005
CC864-SINGLE,
CC864-KPS

#define TELIT_PRODUCT_CC864_SINGLE 0x1006

CC864-K
DE910-DUAL,
HE920, HE910-V2

#define TELIT_PRODUCT_DE910_DUAL 0x1010

CE910-DUAL #define TELIT_PRODUCT_CE910_DUAL 0x1011
LE920 #define TELIT_PRODUCT_LE920 0x1201
UE910-V2 #define TELIT_PRODUCT_UE910_V2 0x1012

If not present, add the statement.

Then add the proper line in the usb_device_id option_ids[] structure:, according to the following table:

UC864-E, UC864-
E-AUTO, UC864-

{ USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_UC864E) },

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 13 of 22

K, UC864-WD,
UC864-WDU
UC864-G { USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_UC864G) },
CC864-DUAL { USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_CC864_DUAL) },
CC864-SINGLE,
CC864-KPS

{ USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_CC864_SINGLE) },

DE910-DUAL,
HE920, HE910-V2

{ USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_DE910_DUAL) },

CE910-DUAL { USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_CE910_DUAL) },
UE910-V2 { USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_UE910_V2) },

Save the changes and close the file.

2.3.1.1 Additional customization for the LE920

The LE920 requires specific customization for not letting the driver option claim other USB interfaces
needed by different drivers.

The driver option should not be bound to the interfaces 1 and 5. According to the kernel version, different
changes should be done in the option source code.

As an example we can consider the source code of the 3.7 kernel version.

First, add the following struct:

static const struct option_blacklist_info telit_le920_blacklist = {
 .reserved = BIT(1) | BIT(2),
};

Then, the following line should be added to the usb_device_id option_ids[] structure:

 { USB_DEVICE(TELIT_VENDOR_ID, TELIT_PRODUCT_LE920),
 .driver_info = (kernel_ulong_t)&telit_le920_blacklist },

2.3.2 Customizing the driver: qmi_wwan

When using the LE920, if the network interface is not recognized by the system it is possible that the driver
should be customized.

Retrieve the appropriate kernel source code version for your system (preferably with the distribution package
system, if any) and unpack/install it. From the unpacking root directory open the file:

/drivers/net/usb/qmi_wwan.c

LE920 VID, PID and interface info should be added to the driver source code. According to the kernel

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 14 of 22

version, different changes should be done in the source code.

As an example we can consider the source code of the 3.7 kernel version. The following line should be added
to the usb_device_id products[] structure:

 {QMI_FIXED_INTF(0x1bc7, 0x1201, 2)}, /* Telit LE920 */

2.3.3 Compiling the drivers

From the unpacking root directory of your kernel run the kernel configuration system (e.g. menuconfig).

Configure the kernel according to the considered system configuration; then browse through the menus
“Device Drivers” → “USB Support” → “USB Serial Converter support” and choose to build “USB driver
for GSM and CDMA modems” as a module:

When using the LE920 browse through the menus “Device Drivers” → “Network Device Support” →
“USB Network Adapters” and choose to build “QMI WWAN driver for Qualcomm MSM based 3G and LTE
modems” as a module.

Once configured, start the build.

The kernel module option.ko can be found in the directory drivers/usb/serial, while the module
qmi_wwan.ko can be found in the directory drivers/net/usb.

If the kernel has been previously already built, the module can be compiled simply typing:

make M=drivers/usb/serial

for option or

make M=drivers/net/usb

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 15 of 22

for qmi_wwan.

The modules can then be loaded using modprobe or insmod.

In order to avoid runtime loading, the drivers should not be built as a modules, but as parts of the kernel.
This is the suggested configuration for Android devices.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 16 of 22

3 Using the module

3.1 Using the driver: option

3.1.1 Shell commands

For testing the serial ports created by the driver, type in a shell (replace the name of the device with the
proper one):

cat /dev/ttyUSBx &
echo –en "ATE0\r" > /dev/ttyUSBx1
echo –en "AT\r" > /dev/ttyUSBx

in order to print on standard output the answer of the modem to the command “ATE0\r” and “AT\r”.

Please note that sending the command “ATE0” is mandatory, otherwise there could be issues in the terminal
output.

3.1.2 Create a PPP connection

Most recent Linux distributions have GUI tools for creating PPP connections; the following instructions are
for creating a PPP connection through command line interface.

PPP support needs to be compiled into the kernel; pppd and chat programs are also needed.

pppd needs two scripts: the first script performs the environment setting and calls the second script, used by
the chat program. For creating a PPP connection type:

pppd file /etc/pppd_script &

1 The use of “ATE0” (echo disabled) before any other AT command is necessary because it
prevents the sending/receiving of spurious characters to/from the modem when used in interaction with the
Linux commands “echo” and “cat”.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 17 of 22

Example of pppd_script :

Debug info from pppd
debug
#kdebug 4
Most phones don't reply to LCP echos
lcp-echo-failure 3
lcp-echo-interval 3
Keep pppd attached to the terminal
Comment this to get daemon mode pppd
nodetach
The chat script (be sure to edit that file, too!)
connect "/usr/sbin/chat -v -f /etc/chatscripts/hsdpa_connect"
Serial Device to which the phone is connected
/dev/ttyUSBx
Serial port line speed
115200
dump
The phone is not required to authenticate
#noauth
user <insert here the correct username for authentication>
name <insert here the name of the connection>
password <insert here the correct password for authentication>
If you want to use the HSDPA link as your gateway
defaultroute
pppd must not propose any IP address to the peer
#noipdefault
ipcp-accept-local
ipcp-accept-remote
Keep modem up even if connection fails
#persist
Hardware flow control
crtscts
Ask the peer for up to 2 DNS server addresses
usepeerdns
No ppp compression
novj
nobsdcomp
novjccomp
nopcomp
noaccomp
For sanity, keep a lock on the serial line
lock
Show password in debug messages
show-password

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 18 of 22

This script calls the option “connect” using the script “hsdpa_connect”; following there is an example of this
script:

#!/bin/sh
Connection to the network
'' AT+CGDCONT=1,"IP","<insert here the correct APN provided by your network operator>"
Dial the number.
OK ATD*99***1#
The modem is waiting for the following answer
CONNECT ''

After launching a PPP connection is possible to use ftp protocol or other utilities that allow the access to the
Internet.

3.1.3 C programming

The following paragraphs show all the functions that can be used from C source code to perform read/write
operations on the serial devices.

3.1.3.1 open()

The open() function shall establish the connection between a file and a file descriptor. The file descriptor is
used by other I/O functions to refer to that file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or O_RDWR

 which request opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if successfull, -1 otherwise

Example:
Open the /dev/ttyUSBx.

int fd; // file descriptor for the /dev/ttyUSBx entry

if((fd = open("/dev/ttyUSBx", O_RDONLY) < 0)
{

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 19 of 22

 /* Error Management Routine */
} else {
 /* ttyUSBx Device Opened */
}

3.1.3.2 read()

The read() function reads nbyte bytes from the file associated with the open file descriptor, fildes, and copies
them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if the operation is completed successfully, otherwise it is -1.

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

3.1.3.3 write()

The write() function writes nbyte bytes from the buffer that are pointed by buf to the file associated with the
open file descriptor, fildes.

Header file:
unistd.h

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 20 of 22

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte)

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully (this number shall never be
greater than nbyte), otherwise it is -1.

Example:
Write strlen(value_to_be_written) bytes from the buffer pointed by value_to_be_written to the file
associated with the open file descriptor, fd.

char value_to_be_written[] = “dummy_write”;

if (write(fd, value_to_be_written, strlen(value_to_be_written)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

3.1.3.4 close()

The close() function shall deallocate the file descriptor indicated by fildes. To deallocate means to make the
file descriptor available for return by subsequent calls to open() or other functions that allocate file
descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if successfull, -1 otherwise

Example:
Close the ttyUSBx file.

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 21 of 22

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

3.1.3.5 Test Program

The following simple C program is useful to test the modem issuing an AT command. The program opens
the /dev/ttyUSBx device and calls the write() and the read() function to send an AT command and receive
the subsequent output.

#include <stdio.h> /* Standard input/output definitions */
#include <string.h> /* String function definitions */
#include <unistd.h> /* UNIX standard function definitions */
#include <fcntl.h> /* File control definitions */
#include <errno.h> /* Error number definitions */
#include <termios.h> /* POSIX terminal control definitions */

#define USB "/dev/ttyUSBx"
#define BUFSIZE 1000
#define BAUDRATE B115200

int open_port(char *port)
{
 struct termios options;
 int fd;

 fd = open(port, O_RDWR | O_NOCTTY | O_NDELAY);

 if (fd == -1)
 {
 printf("open_port: Unable to open the port - ");
 }
 else
 {
 printf ("Port %s with file descriptor=%i",port, fd);
 fcntl(fd, F_SETFL, FNDELAY);

 tcgetattr(fd, &options);

 cfsetispeed(&options, BAUDRATE);
 cfsetospeed(&options, BAUDRATE);

 options.c_cflag |= (CLOCAL | CREAD);

QC Linux USB Driver Software User Guide

1vv0300804 r5 11/19/2013

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 22 of 22

 options.c_cflag &= ~(CSIZE | PARENB | CSTOPB | CSIZE);
 options.c_cflag |= CS8;
 options.c_cflag &= ~CRTSCTS;
 options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
 options.c_iflag &= ~(IXON | IXOFF | IXANY | ICRNL | INLCR | IGNCR);
 options.c_oflag &= ~OPOST;

 if (tcsetattr(fd, TCSANOW, &options) == -1)
 printf ("Error with tcsetattr = %s\n", strerror (errno));
 else
 printf ("%s\n", "succeed");
 }
 return (fd);
}

int main()
{
 int serialFD = open_port(USB);
 char buf[BUFSIZE];
 memset(buf,0,BUFSIZE);

 write(serialFD, "AT\r" , strlen("AT\r"));
 sleep(1);
 read(serialFD, buf, BUFSIZE);

 printf("The string is: %s\n", buf);

 close(serialFD);

 return 0;
}

The “sleep” instruction is necessary because the response of the modem after issuing the command “AT” is
not immediate, so you need to wait a bit before reading. Obviously there are more efficient ways to do this,
that is, for example, put the “read” call in a while loop and exit when the read buffer contains a certain string.

3.2 Using the driver qmi_wwan

To use the network interface exported by the LE920 a modem manager with support for QMI is
recommended.

Refer to the libqmi project (cgit.freedesktop.org/libqmi) for an open-source QMI modem protocol helper
library.

