

xE70-868 RF Module User Guide

1vv0301037 rev.5 - 2015-08-18

APPLICABILITY TABLE

PRODUCT
LE70-868
NE70-868

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

Copyright © Telit Communications S.p.A.

Contents

1. In	troduction	. 7
1.1.	Scope	. 7
1.2.	xE70-868 Product Description	. 7
1.3.	Audience	. 7
1.4.	Contact Information, Support	. 7
1.5.	Text Conventions	. 8
1.6.	Related Documents	. 9
2. Reg	gulatory Conformance Information	10
2.1.	Operational Frequency Bands	10
2.1.		
2.1.	<u>-</u>	
2.2.	Other Regulatory Requirements	11
3. Ger	neral Features	12
3.1.	Main Functionalities	12
3.2.	Software	12
3.3.	Temperature Operating Range	12
3.4.	Mechanical Specifications	13
3.4.	1. Mechanical drawing	14
3.5.	DC Specifications	15
3.6.	Radio Specifications	16
3.7.	Digital Specifications	20
3.8.	Absolute Maximum Ratings	20
3.9.	Ordering Information	21
4. Pi	n-out and signals description	23
4.1.	Module Pin OUT (Top View)	23
4.2.	Module Pin-out table	24
4.3.	Pin-out of the Module DIP	25
4.4.	Dip-Module Pin-out correspondence table	26
4.5.	Signals description	27
5. Pro	ocess Information	28

5.1	1.	Delivery	28
5.2	2.	Storage	29
5.3	3.	Moisture sensibility	29
5.4	4.	Additional Precautions	29
5.5	5.	Soldering pad pattern	29
5.6	б.	Solder paste	30
5.	7.	PCB pad design	31
5.8	В.	PCB pad dimensions	31
5.9	9.	Placement	32
5.3	10.	Soldering Profile (RoHS Process)	32
6.	Воа	ard Mounting Recommendation	34
6.2	1.	Electrical environment	34
6.2	2.	Power supply decoupling on xE70-868 module	34
6.3	3.	RF layout considerations	35
6.4	4.	Antenna connections on printed circuit boards	36
6.5	5.	xE70-868 Interfacing	37
7.	Dec	claration Of Conformity	40
8.	Saf	ety Recommendations	41
9.	Glo	ossary	42
10.	Doc	cument History	43

1. Introduction

1.1. Scope

Scope of this document is to present the features and the application of the Telit xE70-868 radio modules.

1.2. xE70-868 Product Description

The xE70-868 module is a multi-channel radio board, delivering up to 500mW in the 868 MHz ISM band (unlicensed frequency band).

It is delivered with preloaded protocol stack:

"x"	Product name	Stack functionality
L	LE70-868	Star Network
N	NE70-868	Low Power Mesh

xE70-868 is pin-to-pin compatible with LE, NE and ME modules working at different frequencies, in particular xE50-868.

xE70-868 is also pin-to-pin compatible with Telit ZE Family (ZigBee 2007 and ZigBee PRO stack).

1.3. Audience

This document is intended for developers using Telit xE70-868 radio modules.

1.4. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals, contact Telit Technical Support Center (TTSC) at:

TS-SRD@telit.com

TS-NORTHAMERICA@telit.com

TS-LATINAMERICA@telit.com

TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

To register for product news and announcements or for product questions contact Telit Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.5. Text Conventions

<u>Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.</u>

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.6. Related Documents

- [1] EN 300 220-2 v2.4.1, ETSI Standards for SRD, May 2012
- [2] ERC Rec 70-03, ERC Recommendation for SRD, October 2012
- [3] 2002/95/EC, Directive of the European Parliament and of the Council, 27 January 2003
- [4] SR Tool User Guide, 1vv0300899
- [5] 2006/771/EC, Harmonization of the radio spectrum for use by short-range devices
- [6] 2009/381/EC, Amending Decision 2006/771/EC on harmonization of the radio spectrum for use by short-range devices
- [7] Star Network Protocol Stack User Guide, 1vv0300873
- [8] Low Power Mesh Protocol Stack User Guide, 1vv0300944

2. Regulatory Conformance Information

2.1. Operational Frequency Bands

The module radio transmitter operations must be compliant with some regulatory requirements in terms of frequency bands and emitted power, as detailed below.

2.1.1. 868 MHz band Requirements

The "ERC recommendation 70-03 Annex 1" describes the 868 MHz license free band for non-specific short range devices in terms of bandwidth, maximum power, duty cycle and channel spacing. It gives the following limitations:

ERC recommendation 70-03								
Band	Frequency band (MHz)	Maximum radiated power (mW)	Channel spacing	Maximum Duty cycle (%)				
g3	869.400 – 869.650	500	25 kHz or the whole band	10				

These bands are free to use but the module and the user must respect some limitations. Most of these restrictions are integrated in the conception of the module, except the duty cycle. This means that each module is limited to a total transmit time of 6 minutes per hour. It is the responsibility of the user to respect the duty cycle

National Restrictions for non-specific short range devices Annex 1 band g3:

Country	Restriction	Reason/Remark
Band g3		
Georgia	Not implemented	
Russian	Not implemented	
Federation	Not implemented	
Ukraine	Not implemented	

2.1.2. 865 - 867 MHz Band Requirements

In India it is allowed to operate devices in the 865 - 867 MHz frequency band subject to the following maximum limits:

• Transmitter power: 1 W

• Effective radiated power: 4 W

• Carrier bandwidth; 200 kHz

2.2. Other Regulatory Requirements

Furthermore, the module complies with the ETSI 300-220-2 v2.4.1 standards (specific for SRD) which main requirements are described in Appendix 1.

Finally, the module complies with the new European Directive 2002/95/EC concerning the Restrictive Usage of Hazardous Substances (RoHS).

General Features

3.1. Main Functionalities

The xE70-868 module is a complete solution from serial interface to RF interface. The xE70-868 module has a digital part and a RF part. The radio link is a Half-Duplex bi-directional link.

The digital part has the following functionalities:

- Communication interface
- I/O management
- Micro controller with embedded Telit Software Stack

The RF part has the following functionalities:

- Frequency synthesis
- Front-end
- Low noise reception
- Power amplification
- Packet handling

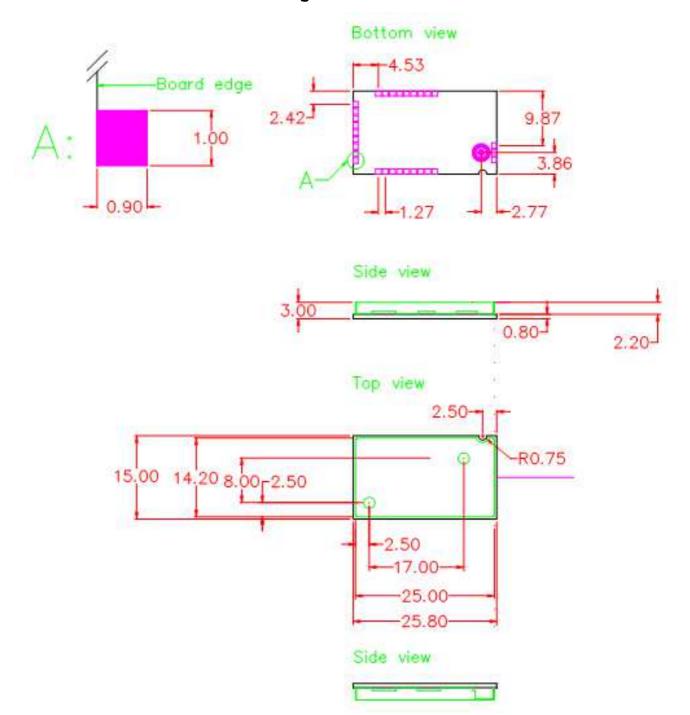
3.2. Software

The xE70-868 module is provided pre-flashed with Telit in-house stack.

Please refer to Protocol Stack User Guides [7][8] for detailed information.

3.3. Temperature Operating Range

	Minimum	Typical	Maximum	Unit					
Operating	Operating								
Temperature	- 40	25	+ 85	°C					
Relative humidity @ 25°C	20		75	%					
Storage									
Temperature	- 40	25	+ 85	°C					



3.4. Mechanical Specifications

Size	Rectangular 25.8 x 15 mm
Height	3 mm
Weight	1.7 g
PCB thickness	0.8 mm
Cover	Mounted above SMD components for EMI reduction and automatic placement • Dimensions: 25 x 14.2 x 2.2mm • Thickness: 200μm
Components	All SMD components, on one side of the PCB.
Mounting	Suitable for RoHS reflow process SMD LGA on the 4 external sides
Number of pins	30

3.4.1. Mechanical drawing

3.5. DC Specifications

Measured on DIP interface with T = 25°C, under 50 ohm impedance connected to RF port and default power register setting if nothing else stated.

Max limits apply over the entire operating range, T=-40°C to +85°C, V_{DD} =2.3V to 3.6V and all channels.

Characteristics xE70-868	Min.	Тур.	Max.	Unit
Power Supply (V _{DD})	+2.3	+3.6	+3.6	V
Consumption at 3.6V				
Maximum output power 500mW (+27dBm)		335	< 400	mA
Reception		25	30	mA
Stand-by (32.768 khz On)		< 2	< 3	μΑ
I/O low level	GND	-	$0.2x V_{DD}$	V
I/O high level	$0.8x V_{DD}$	-	$V_{ m DD}$	V

3.6. Radio Specifications

Measured on DIP interface at T = 25° C, $V_{DD} = 3.6$ V, 50 ohm impedance and default power register setting if nothing else stated.

ERC Rec 70-03 Frequency Band	Band g3: 869.400 MHz - 869.650 MHz							
RF data rate	1.2 kbps 2.4 kbps 4.8 kbps 9.6 kbps 19.2 kbps 38.4 kbps 57.6 kb							
Numbers of channels		1						
Channel width				250 kHz				
Channel 0				869.525 N	ИHz			
Total Bandwidth				250 kH	[z			
			Transmiss	ion				
Duty cycle				≤ 10%				
Modulation Format				2GFSK				
Deviation	± 0.6 kHz	± 1.2 kHz	±7 kHz	±7 kHz	± 10 kHz	± 20 kHz	± 30 kHz	
Frequency tolerance at 25°C				+/- 2.5 kH	Z			
RF Output Power at 3.6V	Selectable by software (see Protocol Stack User Guide [7][8])							
ut 3.0 v			Fron	n +7dBm to -	+27dBm			
Reception								
Rx filter BW	20 kHz	20 kHz	20 kHz	27 kHz	44 kHz	81 kHz	122 kHz	
Sensitivity [dBm] for PER < 0,8 (*)	-119	-119	-117	-115	-113	-110	-108.5	

(*) 20 bytes Data Packet not including preamble length

EDC D 70.02	D 1 - 2 . 9(0 400 MH - 9(0 (50 MH - (1 P - 1
ERC Rec 70-03	Band g3: 869.400 MHz - 869.650 MHz (channelized operation)
Frequency Band	
RF data rate	4.8 kbps
Numbers of channels	10
Channel width	25 kHz
Channel 0	869.4125 MHz
Total Bandwidth	250 kHz
	Transmission
Duty cycle	≤ 10%
Modulation Format	2GFSK
Deviation	± 2.4 kHz
Frequency tolerance at 25°C	+/- 2.5 kHz
	Selectable by software
RF Output Power	(see Protocol Stack User Guides [7][8])
at 3.6V	From +7 dBm to +23dBm
	Reception
Rx filter BW	15 kHz
Sensitivity [dBm] for PER < 0,8 Ch1 – Ch5 – Ch10	-116.5 ; -116.5; -116.5

	Indian Frequency Band: 865 MHz - 867 MHz						
RF data rate	4.8 kbps	9.6 kbps 19.2 kbps					
Numbers of channels	10						
Channel width		200	kHz				
Channel 0		865	.1 MHz				
Total Bandwidth		2	MHz				
		Transmission					
Modulation Format		2G1	FSK				
Deviation	± 7 kHz	±7 kHz	± 10 kHz	± 20 kHz			
Frequency tolerance at 25°C		+/- 2.	5 kHz				
RF Output Power	Selectable by software (see Protocol Stack User Guide [7][8])						
ut 5.0 v		From +7 dBi	m to +27dBm				
		Reception					
Rx filter BW	20 kHz	27 kHz	44 kHz	81 kHz			
Sensitivity [dBm] for PER < 0,8	-116.5	-114.5	-113	-110			

Limits allowed by ETSI standard [1]								
		Tı	ransmission					
Frequency error	+/- 12.5 kHz @ 25 kHz channelization +/- 87 kHz (+/-100 ppm) > 25 kHz channelization							
ACP for channels ≤ 25 kHz			z "receiver" filte z "receiver" filte					
	Reference Bandwidth (RBW)		Limit	Lower envelope point Minimum frequency		Upper envelope point maximum frequency		
Modulation	1 kHz	- 30	dBm (1 µW)	f _{e, lower}		f _{e, upper}		
bandwidth	1 kHz	- 36 d	dBm (250 nW)	(f _{e, lower} – 200	kHz)	$(f_{e, upper} + 200 \text{ kHz})$		
	10 kHz	- 36 d	dBm (250 nW)	(f _{e, lower} – 400	kHz)	$(f_{e, upper} + 400 \text{ kHz})$		
	100 kHz	- 36 d	dBm (250 nW)	(f _{e, lower} – 1 MHz)		(f _{e, upper} + 1 MHz)		
Unwanted	Frequency	7,5 MI 174 M	Hz to 74 MHz Hz to 118 MHz Hz to 230 MHz	Other frequencies below 1 000 MHz		Frequencies above 1 000 MHz		
emissions in the spurious domain	State	470 MHz to 862 MH		- 36 dBm (250 nW)		20 dDm (1W)		
	Operating Standby	- 54 dBm (4 nW) - 57 dBm (2 nW)		- 57 dBm (2 nW)		- 30 dBm (1 μW) - 47 dBm (20 nW)		
	Standby		Reception	- 37 dBiii (2	11 (V)	- 47 dBiii (20 ii W)		
	Frequency offset of unwanted signal	the	Receiver l	oandwidth		imum offset between d and unwanted signals		
	./2.141		151	kHz	≥ 35 dB			
			25 1	kHz	≥ 33 dB			
Blocking for class 2	+/-2 MHz		81 1	kHz	≥ 28 dB			
equipments			122	kHz	≥ 26 dB			
			151	kHz	≥ 60 dB			
	±/ 10 MU ₂		25 1	кНz	≥ 58 dB			
	+/-10 MHz		81 kHz			≥ 53 dB		
			122 kHz			≥ 51 dB		
Spurious radiation	Below 10	000 MH	Z	Above 1000 MHz				
Sparious radiation	- 57 dBn	n (2 nW)	- 47 dBm (20 nW)				

3.7. Digital Specifications

Function	Characteristics		
μС	 128 kB + 8 kB in system programmable flash 8 kB RAM 2 kB E²PROM 		
Serial link	 RS232 TTL Full Duplex 1200 to 115200 bps 7 or 8 bits Parity management Flow control Hardware (RTS/CTS) 		
Embedded software functionality	Flexibility:		

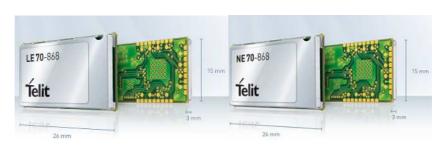
3.8. Absolute Maximum Ratings

Voltage applied to Vcc, V _{DD} :	-0.3V to +3.6V
Voltage applied to "TTL" Input:	-0.3V to V _{DD} +0.3V

3.9. Ordering Information

The following equipments can be ordered (x = L or N):

- The SMD version (xE70-868).
- The DIP interface version (xE70-868).
- The Demo Kit LE70-868 composed by n.2 EVK board, n.2 DIP interface boards, n.2 RF antennas, n.2 USB cables, n.2 batteries 9V.
- The Demo Case NE70-868 composed by n.4 EVK board, n.4 DIP interface boards, n.4 RF antennas, n.4 USB cables, n.2 report I/O interface, n.2 batteries 9V.


The versions below are considered standard and should be readily available. For other versions, please contact Telit. Please make sure to give the complete part number when ordering.

Equipment x = L or N

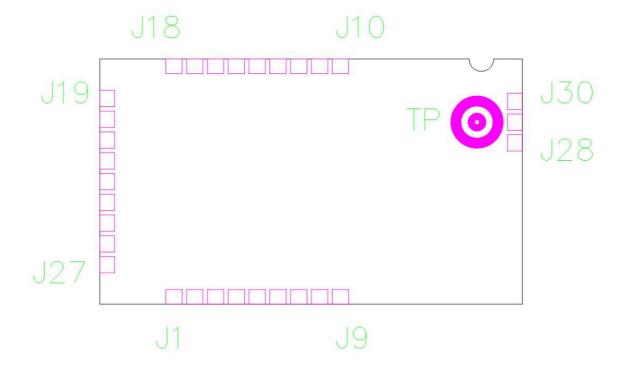
SMD Version

B xE70-868/SMD

DIP Version

B xE70-868/DIP

Demo Kit


LE70-868 Demo Kit/NE70-868 Demo Case

4. Pin-out and signals description

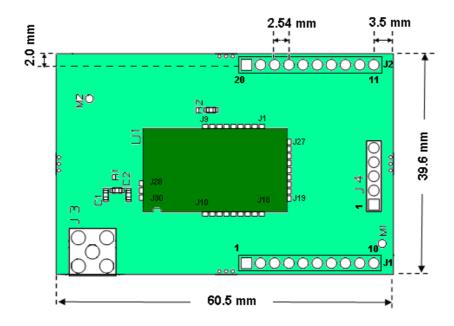
4.1. Module Pin OUT (Top View)

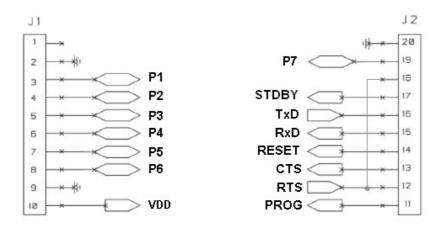
CAUTION: reserved pins must not be connected

CAUTION: In case you want to use in the same application Telit ZE51 or ZE61 modules J9 and J8 should not be connected, since reserved on these modules (see foot notes on Pin-Out tables.

4.2. Module Pin-out table

Pin	Pin name	Pin type	Signal level	Function
J30	GND	Gnd		RF Ground connection for external antenna
J29	Ext_Antenna	RF	RF I/O connection to external antenna	
J28	GND	Gnd		RF Ground connection for external antenna
J27	GND	Gnd		Ground
J26	GND	Gnd		Ground
J25	VDD	Power		Digital and Radio part power supply pin
J24	CTS	I	TTL	Clear To Send
J23	RESET	I	TTL	μC reset (Active low with internal pull-up)
J22	RTS	О	TTL	Request To Send
J21	RXD	I	TTL	RxD UART – Serial Data Reception
J20	GND	Gnd		Ground
J19	TXD	О	TTL	TxD UART – Serial Data Transmission
J18	STAND_BY	I	TTL	Standby (Active high with internal pull-down: when set to 1 the module is put in stand-by)
J17	GND	Gnd		Ground
J16	PROG	I	TTL	Signal for serial µC flashing (Active high with internal pull-down)
J15	GND	Gnd	Ground	
J14	PDI_DATA	I/O	TTL	Program and Debug Interface DATA
J13	GND	Gnd		Ground
J12	GND	Gnd		Ground
J11	GND	Gnd		Ground
J10	PDI_CLK	I	TTL	Program and Debug Interface CLOCK
J9	IO9 ¹	I/O	TTL	Digital I/O N°9 with interrupt
	Status TX/RX	О	TTL	See reference document [7] Star Network Protocol Stack User Guide
Ј8	IO8_AD_DA ²	I/O	analog	A to D and D to A I/O N°8 with interrupt (Logic I/O capability)
	ACK TX	О	TTL	See reference document [7] Star Network Protocol Stack User Guide
J7	IO7_A	I/O	analog	Analog Input N°7 (Logic I/O capability)
J6	IO6_A	I/O	analog	Analog Input N°6 (Logic I/O capability)
J5	IO5_A	I/O	analog	Analog Input N°5 (Logic I/O capability)
J4	IO4_A	I/O	analog	Analog Input N°4 (Logic I/O capability)


 $^{^{1,2}}$ In case you want to use in the same application Telit ZE51 or ZE61 modules J9 and J8 should not be connected, since reserved on these modules.



J3	IO3_A	I/O	analog	Analog Input N°3 (Logic I/O capability)
J2	IO2_P	I/O	TTL	Logic I/O N°2 with interrupt
	RX LED	0	TTL	See reference document [7] Star Network Protocol Stack User Guide
J1	IO1_P	I/O	TTL	Logic I/O N°1 with interrupt
	TX LED	0	TTL	See reference document [7] Star Network Protocol Stack User Guide

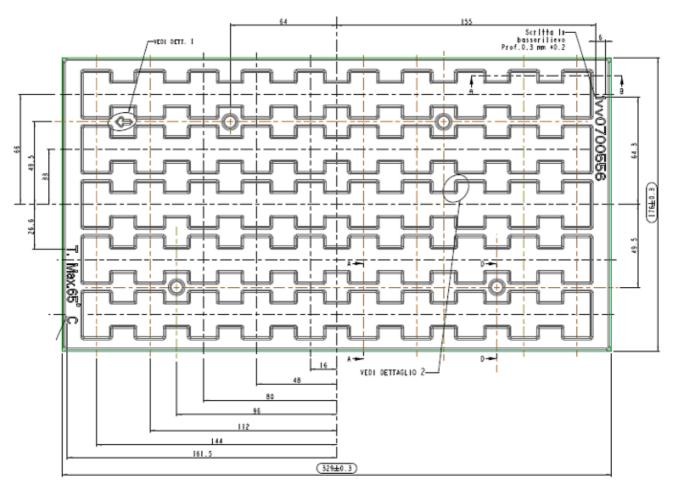
4.3. Pin-out of the Module DIP

4.4. Dip-Module Pin-out correspondence table

Pin-Out correspondence between xE70-868/DIP and xE70-868/SMD

xE70-868/DIP		xE70	-868/SMD	G 4	
Connector	Pin	Name	Pin	Name	Comments
	1				
	2	GND		GND	
	3	P1	J5	IO5_A	
	4	P2	J9	Status TX/RX	Reserved Pin
J1	5	P3	J2	RX LED	
J1	6	P4	J1	TX LED	
	7	P5	J4	IO4_A	
	8	P6	J3	IO3_A	
	9	GND		GND	
	10	VDD	J25	VDD	
	11	PROG	J16	PROG	
	12	RTS	J22	RTS	
	13	CTS	J24	CTS	
	14	RESET	J23	RESET	
J2	15	RxD	J21	RxD	
JZ	16	TxD	J19	TxD	
	17	STDBY	J18	STAND_BY	
	18	RTS	J22	RTS	
	19	P7	J6	IO6_A	
	20	GND		GND	
	1		J14	PDI_DATA	
	2		J10	PDI_CLK	
J4	3		J23	RESET	J4 Connector for debugging and
	4		J25	VDD	flashing
	5			GND	
			J7	IO7_A	
			Ј8	IO8_AD_DA	Reserved Pin
Ј3	SMA	connector	J29	Ext_Antenna (Unbalanced RF)	A 50 Ohm coplanar wave guide and a 0 ohm resistor are used to connect J29 to J3

4.5. Signals description


Signals	Description
Reset	External hardware reset of the radio module. Active on low state.
TXD, RXD	Serial link signals, format NRZ/TTL: TXD is for outgoing data. RXD is for incoming data. The '1' is represented by a high state.
CTS	Incoming signal. Indicates whether the module can send serial data to user (Active, on low state) or not (inactive, on high state).
RTS	Outgoing signal. Indicates whether the user can transmit serial data (active, on low state) or not (inactive, on high state).
Ю	I/O, configurable as input or as output. See reference document [7] for LE70-868.
STANDBY	Input signal which indicates to the module to switch to pre-selected low-power mode. See reference document [7] for LE70-868
TX LED	Output signal set to VCC during radio transmission and set to GND the rest of the time
RX LED	Output signal set to VCC as soon as a radio frame is detected with correct synchronization word. The signal returns to GND as soon as the frame reception is finished
ACK TX	In Addressed Secured mode, this signal rises to VCC when an ACK hasn't been received after frame transmission and repetition. This is the hardware version of "ERROR" serial message. It stays at VCC until next success addressed secured transmission
STATUS TX/RX	Output signal which indicates the status of the serial port. When serial port is transmitting, Status RX/TX signal goes VCC until the end of serial transmission. The signal stays to GND the rest of the time

5. Process Information

5.1. Delivery

xE70-868 modules are delivered in plastic tray packaging, each tray including 50 units. The dimensions of the tray are the following: 329 mm x 176 mm x 5.6 mm. Each unit is placed in a 26.6 mm x 16 mm location. An empty tray weights 45 g and a loaded tray weights around 130 g.

5.2. Storage

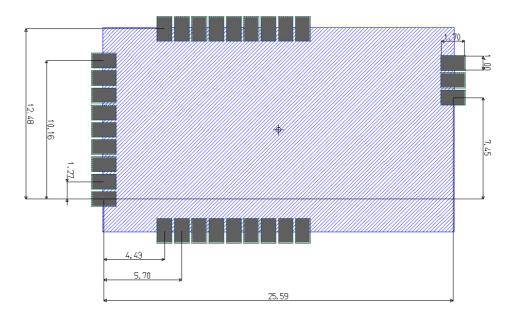
The optimal storage environment for XE70-868 modules should be dust free, dry and the temperature should be included between -40° C and $+85^{\circ}$ C.

5.3. Moisture sensibility

The level of moisture sensibility of the Product is "3" according with standard IPC/JEDEC JSTD-020, take care of all the relative requirements for using this kind of components. Moreover, the customer has to take care of the following conditions:

- a) The shelf life of the Product inside of the dry bag must be 12 months from the bag seal date.
- b) when stored in a non-condensing atmospheric environment of <= 30°C / 60% RH according to IPC/JEDEC J-STD-033A paragraph 5
- c) The maximum time between the opening of the sealed bag and the reflow process must be 168 hours if condition b) "IPC/JEDEC J-STD-033A paragraph 5.2" is respected
- d) Baking is required if conditions b) or c) are not respected
- e) Baking is required if the humidity indicator inside the bag indicates 10% RH or more.

5.4. Additional Precautions


Also, it must be noted that due to some components, XE70-868 modules are ESD sensitive device. Therefore, ESD handling precautions should be carefully observed.

5.5. Soldering pad pattern

The surface finished on the printed circuit board pads should be made of Nickel/Gold surface.

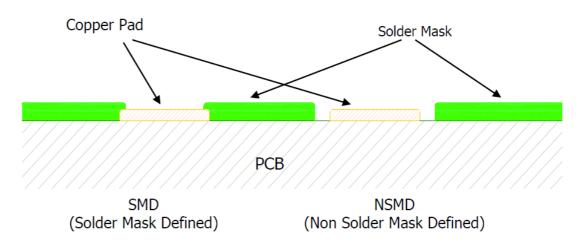
The recommended soldering pad layout on the host board for the xE70-868 module is shown in the diagram below:

All dimensions in mm

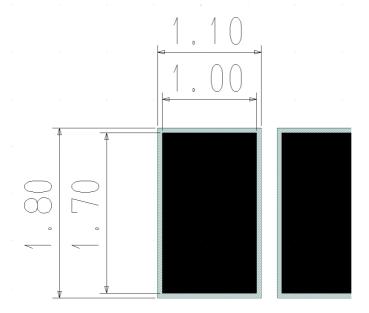
Neither via-holes nor wires are allowed on the PCB upper layer in area occupied by the module.

5.6. Solder paste

xE70-868 module is designed for surface mounting using half-moon solder joints (see diagram below). For proper module assembly, solder paste must be printed on the target surface of the host board. Stencil apertures layout can have the same dimensions as the copper pads.


The solder paste should be eutectic and made of 95.5% of SN, 4% of Ag and 0.5% of Cu. The recommended solder paste height is 180 μm .

The following diagram shows mounting characteristics for ME integration on host PCB.


5.7. PCB pad design

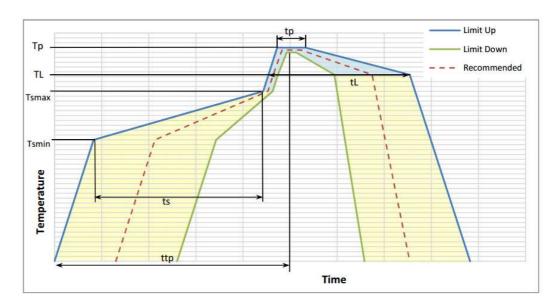
Non-Solder Mask Defined (NSMD) type is recommended for the solder pads on the host pcb:

5.8. PCB pad dimensions

The recommended PCB pad dimensions are described in the following picture: as can be seen, solder mask apertures are 0.1mm larger than the copper pad:

5.9. Placement

The xE70-868 module can be automatically placed on host boards by pick-and-place machines like any integrated circuit.


5.10. Soldering Profile (RoHS Process)

It must be noted that xE70-868 module should not be allowed to be hanging upside down during the reflow operation. This means that the module has to be assembled on the side of the printed circuit board that is soldered last.

The recommendation for lead-free solder reflow in IPC/JEDEC J-STD-020D Standard should be followed.

Profile Feature	Pb-Free Assembly
Average ramp-up rate (TL to Tp)	3°C/seccond max
Preheat	
- Temperature Min (Tsmin)	150°C
- Temperature Max (Tsmax)	200°C
- Time (Tsmin to Tsmax) ts	60-180 seconds
Tsmax to TL	
- Ramp-up rate	3°C/seccond max
Time maintained above:	
- Temperature (TL)	217°C
- Time (tL)	60-150 seconds
Peak Temperature (Tp)	245°C +0/-5 °C
Time within 5°C of actual Peak Temperature (tp)	10-30 seconds
Ramp-down Rate	6°C/second max
Time 25°C to Peak Temperature Tp (ttp)	8 minutes max

The barcode label located on the module shield is able to withstand the reflow temperature.

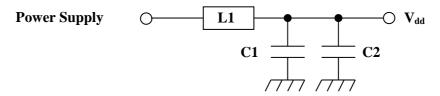
CAUTION - It must also be noted that if the host board is submitted to a wave soldering after the reflow operation, a solder mask must be used in order to protect the xE70-868 radio module's metal shield from being in contact with the solder wave.

6. Board Mounting Recommendation

6.1. Electrical environment

The best performances of the xE70-868 module are obtained in a "noise free" environment. Some basic recommendations must be followed:

• Noisy electronic components (serial RS232, DC-DC Converter, Display, Ram, bus,...) must be placed as far as possible from the xE70-868 module.



CAUTION – A particular attention must be put on power supply DC-DC converter, due to switching frequency that generates spurious into the receiver band. It can strongly decrease module performances. It is then recommended to put a metallic shield covering DC conversion function.

• Switching components circuits (especially RS-232/TTL interface circuit power supply) must be decoupled with a 100 μ F low ESR tantalum capacitor. And the decoupling capacitor must be as close as possible to the noisy chip.

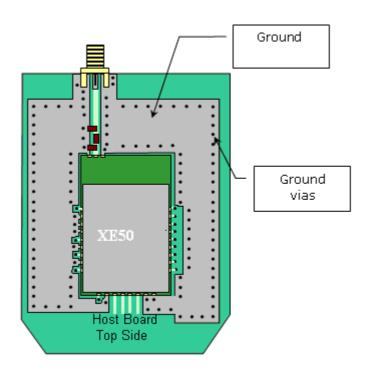
6.2. Power supply decoupling on xE70-868 module

The power supply of xE70-868 module must be nearby decoupled. A LC filter is strongly recommended in case of DC-DC conversion. It must be placed as close as possible to the radio module power supply pin, VDD.

For example:

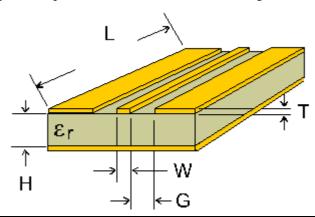
Symbols	Reference	Value	Manufacturer
L1	LQH32CN1R0M33	1μΗ	Murata
C1	GRM31CF51A226ZE01	22μF	Murata
C2	Ceramic CMS 25V	100nF	Multiple

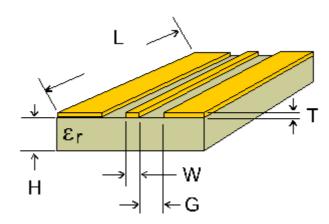
L1 must be chosen carefully with very low serial resistance (ESR) in order to limit voltage drop.



6.3. RF layout considerations

Basic recommendations must be followed to achieve a good RF layout:


- It is recommended to fill all unused PCB area around the module with ground plane
- The radio module ground pin must be connected to solid ground plane.
- If the ground plane is on the bottom side, a via (Metal hole) must be used in front of each ground pad. Especially J28 and J30 (RF Gnd) pins should be grounded via several holes to be located right next to the pins thus minimizing inductance and preventing mismatch and losses.

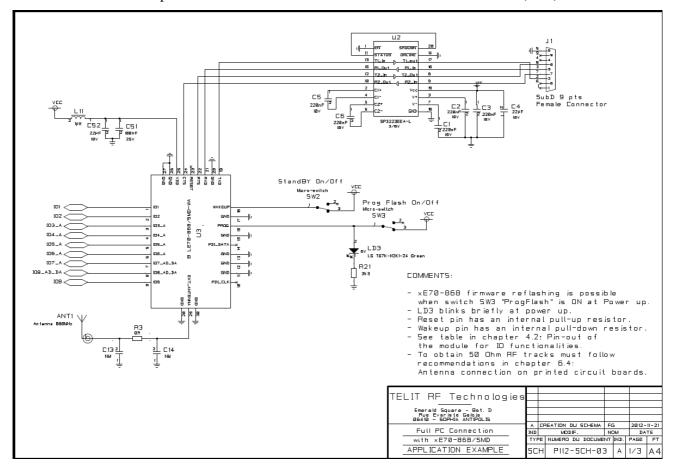

6.4. Antenna connections on printed circuit boards

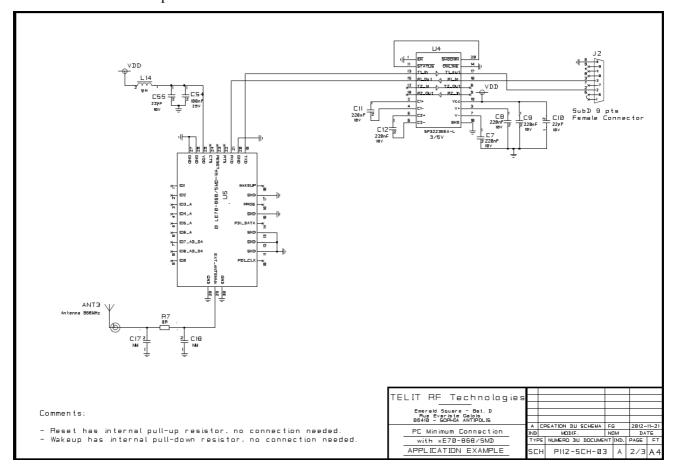
Special care must be taken when connecting an antenna or a connector to the module. The RF output impedance is 50 ohms, so the strip between the pad and the antenna or connector must be 50 ohms following the tables below. Ground lines should be connected to the ground plane with as many vias as possible, but not too close to the signal line.

PCB material	PCB thickness H (mm)	Coplanar line W (mm)	Coplanar line G (mm)
FR4	0.8	1	0.3
	1.6	1	0.2

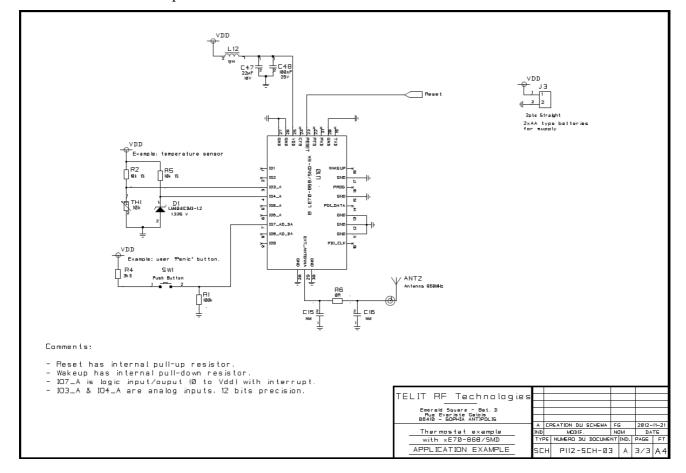
Table 1: Values for double face PCB with ground plane around and under coplanar wave guide (recommended)

PCB material	PCB thickness H (mm)	Coplanar line W (mm)	Coplanar line G (mm)
FR4	0.8	1	0.22
rk4	1.6	1	0.23


Table 2: Values for simple face PCB with ground plane around coplanar wave guide (not recommended)


6.5. xE70-868 Interfacing

Example of a full RS-232 connection between a PC or an Automat (PLC) and xE70-868



Example of minimum connections for communication between a PC and xE70-868

Example for sensor connection with xE70-868

7. Declaration Of Conformity

Mod 0211 2012-11 Rev. 2 (758/2008/EC)

8. Safety Recommendations

READ CAREFULLY

Be sure the use of this product is allowed in the country and in the environment required. The use of this product may be dangerous and has to be avoided in the following areas:

- Where it can interfere with other electronic devices in environments such as hospitals, airports, aircrafts, etc.
- Where there is risk of explosion such as gasoline stations, oil refineries, etc. It is responsibility of the user to enforce the country regulation and the specific environment regulation.

Do not disassemble the product; any mark of tampering will compromise the warranty validity. We recommend following the instructions of the hardware user guides for a correct wiring of the product. The product has to be supplied with a stabilized voltage source and the wiring has to be conforming to the security and fire prevention regulations. The product has to be handled with care, avoiding any contact with the pins because electrostatic discharges may damage the product itself. The system integrator is responsible of the functioning of the final product; therefore, care has to be taken to the external components of the module, as well as of any project or installation issue, because the risk of disturbing the GSM network or external devices or having impact on the security. Should there be any doubt, please refer to the technical documentation and the regulations in force. Every module has to be equipped with a proper antenna with specific characteristics. The antenna has to be installed with care in order to avoid any interference with other electronic devices and has to guarantee a minimum distance from the body (20 cm). In case of this requirement cannot be satisfied, the system integrator has to assess the final product against the SAR regulation.

The European Community provides some Directives for the electronic equipments introduced on the market. All the relevant information's are available on the European Community website:

http://ec.europa.eu/enterprise/sectors/rtte/documents/

The text of the Directive 99/05 regarding telecommunication equipments is available, while the applicable Directives (Low Voltage and EMC) are available at:

http://ec.europa.eu/enterprise/sectors/electrical/

9. Glossary

ACP Adjacent Channel Power
AFA Adaptive Frequency Agility

bps Bits per secondBW BandwidthdB Decibel

dBm Power level in decibel milliwatt (10 log (P/1mW)) **E**²**PROM** Electrically Erasable Programmable Read Only Memory

e.r.p Effective radiated power

ETSI European Telecommunication Standard Institute

GFSK Gaussian Frequency Shift Keying

I Input

ISM Industrial, Scientific and Medical

kB KiloByte

kbps Kilobits per secondkcps Kilochips per second

kHz Kilo Hertz

LBT Listen Before Talk
LGA Land Grid Array
MHz Mega Hertz
mW milliwatt
O Output

PER Packet Error Rate
ppm Parts per million

RAM Random Access Memory

RF Radio Frequency

RoHS Restriction of Hazardous Substances

RxD Receive Data

SMD Surface Mounted Device SRD Short Range Device

TxD Transmit Data

UART Universal Asynchronous Receiver Transmitter

 μC microcontroller

10. Document History

Revision	Date	Changes
0	2012-11-21	First Release
1	2014-01-30	Inserted NE70-868 module and DoC
2	2014-04-01	Updated Demo Kit/Case content
3	2014-07-18	Updated Radio Specifications table
4	2014-07-22	Corrected partname for L1 on page 32
5	2015-08-18	Updated mounting process information, chapter 5