

Модуль ГНСС ГеоС-3Е[®] («ЭРА-ГЛОНАСС»)

Руководство по эксплуатации. Редакция 1.0

ООО ДЦ «ГеоСтар навигация» Москва, 2015

Оглавление

1. Перечень принятых сокращении	
2. Описание и работа	
2.1. Назначение	
2.2. Ключевые особенности	
2.3. Комплект поставки	
2.4. Структурная схема	
2.4.1 RTC, резервное ОЗУ	
2.4.2 Flash память	
2.5. Основные отличия ГеоС-3Е от ГеоС-3	
2.6. Технические характеристики	
2.7. Электрические параметры	
2.8. Входные/выходные сигналы	
2.9. Питание	
2.10. Состояния модуля	
2.11. Последовательные порты	
2.12. Используемые ГНСС	
2.13. Темп выдачи выходных данных	
2.14. Секундная метка времени	
2.15. Вывод STATUS	
2.16. Выводы PD, PD_ACK	
2.17. Требования к антенне. Монитор питания антенны	
2.18. Аппаратная телеметрия модуля	
2.19. Поддерживаемые протоколы обмена	
2.19.1 Бинарный протокол	
2.19.2 NMEA протокол	
2.20. Конструкция	
2.21. Маркировка	
2.22. Упаковка	
2.23. Защита от статического электричества	
2.24. Соответствие международным экологическим стандартам	
3. Использование по назначению	
3.1. Типовая схема включения	
3.2. Последовательность подачи напряжения питания VDD и входных сигналов	
3.3. Использование сигнала ON/OFF	
3.4. Рекомендованное посадочное место на ПП пользователя	
3.5. Конфигурация и настройки встроенного ПО	
3.5.1 Управление настройками последовательных портов	
3.5.2 Профили динамики потребителя	35
3.6. Особенности работы в различных режимах	
3.6.1 Старт приемника после включения	36
3.6.2 Холодный, теплый, горячий старт	37
3.6.3 Особенности управления модулем по бинарному протоколу	38
3.6.4 Особенности управления модулем по NMEA протоколу	38
3.6.5 Режимы работы	
3.6.5.1 Автономный режим	40
3.6.5.2 Дифференциальные режимы	
3.6.5.3 Режим с фиксацией координат (временные приложения)	
3.6.5.4 Режимы энергосбережения	
3.6.6 Альманахи	
4. Техническое обслуживание	
5. Текущий ремонт	
6. Транспортирование и хранение	
····	

Список иллюстраций

Рис. 1. Структурная схема ГеоС-3Е	9
Рис. 2. Временные диаграммы на выводе STATUS	18
Рис. 3. Габаритный чертеж	
Рис. 4. Чертеж контактных площадок	27
Рис. 5. Маркировка	
Рис. 6. Упаковка	
Рис. 7. Типовая схема включения	31
Рис. 8. Упрощенная схема включения	31
Рис. 9. Рекомендованное посадочное место	
Рис. 10. Последовательность выдачи NMEA сообщений	41
Рис. 11. Временная привязка сообщений к секундной метке времени	46
Рис. 12. Временные диаграммы в режимах энергосбережения	49
Рис. 13. Временные диаграммы выхода из режима RELAXED FIX®	52
Рис. 14. Временные диаграммы пробуждения и выхода из режима FIX-BY-REQUEST®	

История изменений

#	Изменение	Примечания
	Редакция 1.0 от 15/09/2015	
1	Первичный релиз	

Введение

Данный документ предназначен для пользователей многоканальных ГЛОНАСС/GPS/SBAS приемных модулей ГеоС-3E и содержит общее описание, технические характеристики и правила эксплуатации, транспортирования и хранения.

Документ состоит из шести глав следующего содержания:

- <u>Глава 1</u>: список используемых сокращений
- Глава 2: описание приемника и его работы
- Глава 3: использование приемника по назначению
- <u>Глава 4</u>: правила технического обслуживания приемника
- <u>Глава 5</u>: текущий ремонт приемника
- <u>Глава 6</u>: указания по транспортированию и хранению.

1. Перечень принятых сокращений

ВЧ: высокочастотный

ГНСС: глобальная навигационная спутниковая система

КА: космический аппарат

Лог. «0»: логический «0» (низкий логический уровень) **Лог. «1»**: логическая «1» (высокий логический уровень)

МШУ: малошумящий усилитель **H3**: навигационная задача **ОГ**: опорный генератор

ОЗУ: оперативное запоминающее устройство **ПАВ**: поверхностные акустические волны

по: программное обеспечение

ПП: печатная плата

ССП: слово состояния приемника

СТ: стандартной точности

ШВ: шкала времени

ЭРА-ГЛОНАСС: система экстренного реагирования при авариях

ESD: Electro Static Discharge (разряд статического электричества)

HBM: Human Body Model (модель электростатического заряда

человеческого тела)

RTC: Real Time Clock (часы реального времени)

TCXO: Thermo Compensated Crystal Oscillator (термо-компенсированный

кварцевый генератор)

2. Описание и работа

2.1. Назначение

Приемное устройство ГНСС ГЛОНАСС/GPS/SBAS ГеоС-3E (далее по тексту – приемник, модуль) предназначено для вычисления текущих координат и скорости объекта в реальном масштабе времени в автономном и дифференциальных режимах, формирования секундной метки времени и обмена с внешним оборудованием по последовательным портам RS232. Модуль соответствует требованиям ГОСТ Р 54620-2011 («Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Автомобильная система/устройство вызова экстренных оперативных служб. Общие технические требования (с Изменением N1)»).

Принцип действия приемника основан на параллельном приеме и обработке 32-мя измерительными каналами сигналов навигационных КА ГЛОНАСС в частотном диапазоне L1 (СТ-код) и GPS/SBAS на частоте L1 (С/А код).

2.2. Ключевые особенности

- Одновременная обработка всех видимых КА GPS и ГЛОНАСС
- Поддержка SBAS
- Автономный и дифференциальный режимы
- Чувствительность по слежению: до -160дБмВт
- Потребляемая мощность: 130мВт (обнаружение), 115мВт (слежение)
- Улучшенная помехозащита
- Напряжение питания: 3,3В
- Напряжение питания антенны: от 1,8В до 3,6В
- Встроенная Flash память для хранения альманахов и настроек приемника
- Встроенная схема питания активной антенны с монитором состояния антенны и защитой от короткого замыкания
- Два режима энергосбережения: RELAXED FIX® и FIX-BY-REQUEST®
- Форм-фактор ГеоС-3
- Демонстрационные и отладочные средства: ДемоКит ГеоС-3E, СервисКит ГеоС-3E.

2.3. Комплект поставки

Комплект поставки включает в себя:

- 1. Навигационный модуль ГеоС-3Е
- 2. Руководство по эксплуатации; может быть получено с сайта производителя http://geostar-navi.com
- 3. Демонстрационное ПО для ПК GeoSDemo3®; может быть получено с сайта производителя http://geostar-navi.com
- 4. Руководство пользователя программы GeoSDemo3®; может быть получено с сайта производителя http://geostar-navi.com
- 5. Упаковка в блистерную ленту.

2.4. Структурная схема

Состав (Рис. 1):

- Аналоговая секция
- Цифровая секция
- SPI Flash память
- Два ВЧ ПАВ фильтра
- Опорный генератор (ТСХО)
- Кварцевый резонатор 32.768КГц
- Цепи защиты от электростатического разряда (на рисунках не показаны).

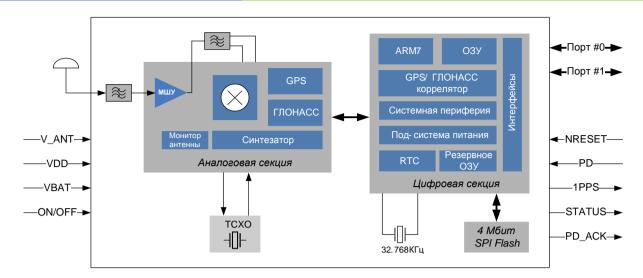


Рис. 1. Структурная схема ГеоС-3Е

2.4.1 RTC, резервное ОЗУ

Часы реального времени (RTC) и резервное ОЗУ – блоки цифровой секции, которые продолжают функционировать при отсутствии основного питания (условия см. в разделе 2.9) и обеспечивают дальнейший теплый/горячий старт приемника при его восстановлении. Часы реального времени тактируются частотой 32,768КГц и осуществляют отсчет времени. В резервном ОЗУ сохраняются эфемериды КА и другие данные, необходимые для реализации теплого/горячего старта.

2.4.2 Flash память

Во Flash памяти хранится программный код (встроенное ПО), настройки и конфигурация модуля, альманахи ГНСС и ряд других данных. Модуль поддерживает перепрошивку встроенного ПО в процессе эксплуатации в составе аппаратуры пользователя.

2.5. Основные отличия ГеоС-3Е от ГеоС-3

Отличия от базовой версии модуля ГеоС-3:

- Напряжение питания 3,3В
- Повышенный уровень помехозащиты
- Модифицированное встроенное ПО модуля для обеспечения соответствия требованиям ГОСТ Р 54620-2011.

2.6. Технические характеристики

Таблица 1. Основные технические характеристики

#	Параметр	Значение	Примечания
1	Количество каналов	32	
2	Сигналы	L1 GPS C/A, L1 ГЛОНАСС СТ, SBAS	
3	Погрешность определения плановых координат, м, не более	2,5 2,0 1,5	СЕР 50% Уровни сигналов -130дБмВт HDOP<2, VDOP<3 Скорость не более 30м/с
4	Погрешность определения высоты, автономный режим, м, не более	3,5	50% Уровни сигналов -130дБмВт HDOP<2, VDOP<3 Скорость не более 30м/с
5	Погрешность определения плановой скорости, м/с, не более • Автономный режим	0,03	СКО Уровни сигналов -130дБмВт HDOP<2, VDOP<3 Скорость не более 30м/с
6	Погрешность секундной метки времени, нс, не более	30	СКО Уровни сигналов -130дБмВт HDOP<2, VDOP<3
7	Время до первого местоопределения, с, не более	28 25 2 4	Среднее значение. Уровни сигналов -130дБмВт
8	Чувствительность, дБмВт	-143 -160 -159	Внешний МШУ. Эквивалентная шумовая температура (источник шума+МШУ+приемник)=~400К
9	Динамика Ускорение, g, не более Максимальная скорость, м/с Максимальная высота, м	3 515 18000	Уровни сигналов -125дБмВт
10	Темп выдачи выходных данных, Гц	1/2/5/10	
11	Интерфейсы	2xRS232, LVCMOS	
12	Размеры (длина х ширина х высота), мм	22,1x15,9x2,8	
13	Масса, г, не более	2,0	
14	Диапазон рабочих температур, °С	-40+85	

Примечания:

1. После блокирования сигналов на время до 60 секунд

2.7. Электрические параметры

Воздействия, выходящие за пределы предельно-допустимых параметров, могут привести к выходу приемника из строя

Таблица 2. Предельно-допустимые электрические параметры

Памацата	Значение		Ед.	П	
Параметр	Мин	Макс	изм.	Примечания	
Диапазон напряжения V_{DD}	-0,5	4,6	В		
Диапазон напряжения V _{BAT}	-0,3	4,0	В		
Диапазон напряжения V _{ANT}	-0,3	3,75	В		
Диапазон уровней на входных выводах (V _I) ⁽¹⁾	-0,5	4,6	В		
Ток короткого замыкания выходных выводов (Io) ⁽²⁾	-24	24	мА		
Ток короткого замыкания в антенне (Іапт)	-	50	мА		
Максимально допустимый уровень ВЧ сигнала	-	13	дБмВт	На выводе ANT	
Максимально допустимый уровень электростатического разряда		2000	В	НВМ	
Температура хранения (T _{STG})	-40	+85	°C		

Примечания:

- 2. Выводы PD, NRESET, RX0, RX1, ON/OFF
- 3. Выводы 1PPS, PD_ACK, STATUS, TX0, TX1

Таблица 3. Рабочие электрические параметры

Попомото	Обознач		Значение)	Ед.	Примонания
Параметр	ение	Мин	Ном	Макс	изм.	Примечания
Основное напряжение питания	V_{DD}	3,0	3,3	3,6	В	
Резервное напряжение питания	V _{BAT}	1,6	-	3,6	В	
Напряжение питания антенны	V _{ANT}	1,8	-	3,6	В	
Ток потребления по цепи VDD, обнаружение	I _{DD_ACQ}	-	41	-	мА	V _{DD} =3,3B
Ток потребления по цепи VDD, слежение	I _{DD_TRK}	-	35	-	мА	V _{DD} =3,3B
Ток потребления по цепи VDD, состояние «ВЫКЛЮЧЕН»	I _{DD_OFF}	-	180	220	мкА	ON/OFF=0
Ток потребления по цепи VDD, состояние «ОБНУЛЕН»	I _{DD_RESET}	-	13	16	мА	NRESET=0
Ток потребления по цепи VDD, состояние «СОН»	I _{DD_SLEEP}	-	4	-	мА	
Ток потребления по цепи VDD, режим энергосбережения	I _{DD_PS}	-	7,5	-	мА	Скважность «АКТИВЕН»:«СОН»=1: 10

Пототот	Обознач		Значение)	Ед.	П
Параметр	ение	Мин	Ном	Макс	изм.	Примечания
Ток потребления от резервной батареи	I _{BAT}	-	8	-	мкА	V _{DD} отключено
Падение напряжения в цепи			100	150		I _{ANT} =10mA
питания антенны (между	V _{ANT_DROP}	-	200	240	мВ	І _{АПТ} =20мА
контактами V_ANT и ANT)			300	340		І _{АПТ} =30мА
Рабочий диапазон токов антенны	I _{ANT}	3	-	32	мА	
Выходное напряжение низкого уровня ⁽¹⁾	V _{OL}	-	-	0,4	В	V _{DD} =3,3В, I _{OL} =8мА
Выходное напряжение высокого уровня ⁽¹⁾	V _{OH}	2,4	-	-	В	V _{DD} =3,3В, I _{OH} =-8мА
Выходное напряжение низкого уровня ⁽¹⁾	V _{OL}	-	-	0,1	В	V _{DD} =3,3B, I _{OL} =0,1MA
Выходное напряжение высокого уровня ⁽¹⁾	V _{OH}	V _{DD} -0,1	-		В	V _{DD} =3,3B, I _{OH} =-0,1мА
Выходной ток низкого уровня (1)	loL	-	-	8	мА	V _{DD} =3,3B
Выходной ток высокого уровня (1)	Іон	-	-	-8	мА	V _{DD} =3,3B
Входное напряжение низкого уровня ⁽²⁾	VıL	-	-	0,8	В	V _{DD} =3,3B
Входное напряжение высокого уровня ⁽²⁾	VIH	2,0	-	-	В	V _{DD} =3,3B
Сопротивление pull-down (3)	R _{PD}	-	75	-	КОм	V _{DD} =3,3B
Сопротивление pull-up (4)	R _{PU}	-	75	-	КОм	V _{DD} =3,3B
ВЧ параметры						
Эквивалентный коэффициент шума	NF		5,0		дБ	

Примечания:

- 1. 1PPS, PD_ACK, STATUS, TX0, TX1
- 2. PD, NRESET, RX0, RX1, ON/OFF
- 3. PD
- 4. NRESET, RX0, RX1, ON/OFF

2.8. Входные/выходные сигналы

Таблица 4. Входные/выходные сигналы

Номер	Тип	РМИ	Описание
1, 2		NC	Не используется
3, 4	Вход	BM1, BM0	Тестовые выводы. Не подключать
5, 6		GND	Общий (корпус)
7	Вход	ON/OFF	Включение/выключение модуля
8	Вход	PD	Сигнал пробуждения
9	Вход	RX0	Принимаемые данные RS232, Порт #0
10	Выход	TX0	Передаваемые данные RS232, Порт #0
11	Вход	RX1	Принимаемые данные RS232, Порт #1
12	Выход	TX1	Передаваемые данные RS232, Порт #1
13	Вход	NRESET	Внешнее обнуление
14	Выход	STATUS	Состояние модуля
15	Выход	PD_ACK	Индикатор состояния «АКТИВЕН»/«СОН»
16, 17		NC	Не используется
18, 19		GND	Общий (корпус)
20	Выход	1PPS	Выходная секундная метка времени
21	Вход	VBAT	Резервное напряжение питания
22	Вход	VDD	Основное напряжение питания 3,3В
23		NC	Не используется
24		GND	Общий (корпус)
25	Вход	V_ANT	Напряжение питания антенны
26, 27		GND	Общий (корпус)
28	Вход	ANT	Антенный вход
29, 30		GND	Общий (корпус)

Описание входных/выходных сигналов модуля:

ANT

Вход подключения антенны.

Если напряжение питания антенны разрешено бинарным сообщением «0xC7», то на этот вывод поступает напряжение питания, подаваемое на вывод V_ANT модуля. По умолчанию, напряжение питания антенны разрешено

V ANT

Напряжение питания антенны

VDD

Основное напряжение питания

VBAT

Резервное (батарейное) напряжение питания

1PPS

Выходная секундная метка времени.

Программируемые параметры: включена/выключена, длительность, полярность, сдвиг.

PD_ACK

Выходной индикатор состояния модуля «АКТИВЕН»/«СОН».

Высокий уровень соответствует состоянию «АКТИВЕН». Низкий уровень соответствует состоянию «СОН»

STATUS

Индикатор текущего статуса модуля

NRESET

Входной сигнал обнуления.

Активный уровень: низкий. Подтянут к VDD (pull-up).

Длительность лог. «0» должна быть не менее 100нс

TX0, TX1

Передаваемые данные последовательных Портов #0 и #1, соответственно

RX0, RX1

Принимаемые данные последовательных Портов #0 и #1, соответственно.

Подтянуты к VDD (pull-up)

PD

Входной сигнал пробуждения модуля в режиме FIX-BY-REQUEST®.

Активным является положительный фронт сигнала (переход из низкого уровня в высокий). Подтянут к GND (pull-down). Длительность лог. «1» должна быть не менее 100мкс

ON/OFF

Управление включением/выключением модуля.

Низкий уровень выключает модуль, высокий – включает. Подтянут к VDD (pull-up)

2.9. Питание

Модуль имеет одно основное напряжение питания (вывод VDD): 3,3В. Допустимый уровень пульсаций – 50мВ пик-пик.

Для обеспечения работы приемника в теплом и горячем старте к выводу VBAT может подключаться внешний источник резервного питания. Если не используется, вывод VBAT может быть оставлен неподключенным.

Для управления включением модуля используется сигнал ON/OFF: лог. «1» включает приемник, лог. «0» — выключает. Если не используется, вывод ON/OFF может быть оставлен неподключенным или соединен с VDD. При выключении модуля (VDD=0 или ON/OFF=0) питание антенны на контакте ANT отключается.

Для питания активной антенны используется вывод V_ANT . Если не используется, вывод V_ANT может быть оставлен неподключенным (подробности см. в разделе 2.17).

2.10. Состояния модуля

Модуль может находиться в одном из следующих пяти состояний – «ВЫКЛЮЧЕН», «РЕЗЕРВ», «ОБНУЛЕН», «АКТИВЕН», «СОН» (Таблица 5).

Таблица 5. Состояния модуля

Состояние	Описание	Условия	Потребление (тип)
«ВЫКЛЮЧЕН»	Приемник обесточен. Целевая функция получения навигационных определений не выполняется. Обмен с приемником по последовательным портам невозможен. Часы реального времени продолжают отсчет времени для поддержания ШВ, в резервном ОЗУ хранятся данные, что обеспечивает теплый или горячий старт после включения (ON/OFF=1)	VDD – вкл, VBAT – безразл, ON/OFF=0 NRESET=1	180мкА (по цепи VDD)
«PE3EPB»	Приемник обесточен. Целевая функция получения навигационных определений не выполняется. Обмен с приемником по последовательным портам невозможен. Часы реального времени продолжают отсчет времени для поддержания ШВ, в резервном ОЗУ хранятся данные, что обеспечивает теплый или горячий старт после включения (VDD – вкл, ON/OFF=1)	VDD – выкл, VBAT – вкл, ON/OFF= безразл NRESET= безразл	8мкА (по цепи VBAT)
«ОБНУЛЕН»	Питание на приемник подано. Цифровая часть находится в состоянии сброса, аналоговая часть работает. Целевая функция получения навигационных определений не выполняется. Обмен с приемником по последовательным портам невозможен. Часы реального времени продолжают отсчет времени для поддержания ШВ, в резервном ОЗУ хранятся данные, что обеспечивает теплый или горячий старт после подачи NRESET=1	VDD – вкл, VBAT – безразл, NRESET=0 ON/OFF=1	13мА (по цепи VDD)
«АКТИВЕН»	Питание на приемник подано. Приемник выполняет целевую функцию получения и выдачи навигационных определений.	VDD – вкл, VBAT – безразл, NRESET=1 ON/OFF=1	41мА (по цепи VDD)
«СОН»	Питание на приемник подано. Аналоговая часть и большая часть цифровых блоков выключены. Приемник поддерживает ШВ из частоты ТСХО, выдает некоторые сообщения по последовательным портам и ожидает пробуждения. Целевая функция получения навигационных определений не выполняется.	VDD – вкл, VBAT – безразл, NRESET=1 ON/OFF=1	4мА (по цепи VDD)

2.11. Последовательные порты

Приемник имеет два последовательных порта RS232 для организации обмена с внешними устройствами – Порт #0 и Порт #1.

Оба порта RS232 – со следующими программируемыми параметрами (программируются индивидуально для каждого порта):

- Скорость приема/передачи, бит/с: 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
- Количество стоповых бит: 1 или 2
- Бит четности: не формируется, формируется как бит четности, формируется как бит нечетности, всегда «0», всегда «1».

По умолчанию параметры обоих портов: скорость 115200, 1 стоповый, бит четности не формируется.

2.12. Используемые ГНСС

Приемник с одинаковым приоритетом принимает и обрабатывает сигналы поддерживаемых ГНСС (ГЛОНАСС и GPS). Приемник может работать в следующих режимах:

- Топько GPS
- Только ГЛОНАСС
- Режим совмещенного использования ГЛОНАСС и GPS (по умолчанию).

2.13. Темп выдачи выходных данных

Темп выдачи выходных данных может быть установлен равным 1, 2, 5 или 10Гц.

2.14. Секундная метка времени

Приемник формирует секундную метку времени на выводе 1PPS. Секундная метка времени представляет собой импульс, идущий с темпом 1 раз в секунду, со следующими параметрами, программируемыми через бинарный протокол (пакет «0х4С»):

- 1PPS выдается/1PPS не выдается
- Шкала времени, с которой синхронизирован 1PPS: GPS, ГЛОНАСС, UTC(USNO), UTC(SU)
- Полярность: положительная или отрицательная. В первом случае выбранной шкале времени соответствует положительный фронт импульса (переход из лог. «0» в лог. «1»); во втором случае отрицательный фронт импульса (переход из лог. «1» в лог. «0»)

• Длительность: от 10мкс до 2мс.

Кроме того, пакет «0x4C» предоставляет возможность сдвига метки времени на фиксированную задержку в пределах ±0,5с.

Секундная метка времени формируется с временным дискретом 61нс.

2.15. Вывод STATUS

Выходной вывод STATUS представляет собой индикатор статуса модуля (**ПОИСК**, **НАВИГАЦИЯ**, **НЕНОРМА**), каждый из которых отображается посредством следования импульсов с различной частотой и длительностью:

- 1. **ПОИСК**: идет поиск сигналов, аппаратная телеметрия в норме, нет решения Н3, данные навигационных определений недоступны. Сигнал на выводе: меандр с периодом 2c (длительность лог. «1» 1c, лог. «0» 1c)
- 2. **НАВИГАЦИЯ**: сигналы в слежении, решается Н3, данные навигационных определений выдаются. Сигнал на выводе: период 1с (длительность лог. «1» 0,2с, лог. «0» 0,8с)
- 3. **НЕНОРМА**: ошибка хотя бы одного из параметров в аппаратной телеметрии, решения НЗ нет. Сигнал на выводе: период 0,5с (длительность лог. «1» 0,2с, лог. «0» 0,3с)

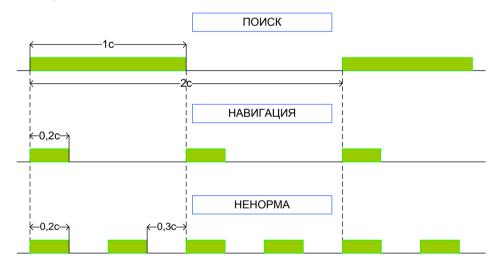


Рис. 2. Временные диаграммы на выводе STATUS

В режимах энергосбережения поведение вывода следующее: в состоянии «СОН» (PD_ACK=0) на выводе формируется лог. «0»; в состоянии «АКТИВЕН» (PD_ACK=1) управляется, как описано выше.

2.16. Выводы PD, PD_ACK

Входной вывод PD используется для пробуждения модуля в режиме энергосбережения FIX-BY-REQUEST®.

Активным является положительный фронт сигнала (переход из лог. «0» в лог. «1»). Длительность лог. «1» должна быть не менее 100мкс.

Выходной вывод PD_ACK представляет собой индикатор состояний «АКТИВЕН» и «СОН». Если модуль находится в состоянии «АКТИВЕН», то PD_ACK=1. Если модуль находится в состоянии «СОН», то PD_ACK=0.

2.17. **Требования к антенне. Монитор питания** антенны

Приемник предназначен для работы, как с пассивной, так и с активной антенной. Активная антенна должна обеспечивать дополнительное усиление не более 25дБ. Дополнительное усиление определяется как усиление антенны минус потери в антенном кабеле. Потери в кабеле зависят от его типа и длины. В общем случае, чем толще кабель, тем меньшее удельное затухание и, соответственно, потери он имеет.

Питание активной антенны производится подачей напряжения на вывод V_ANT. Цепь питания антенны модуля имеет встроенный монитор, который отслеживает состояние антенны и выдает его в бинарном сообщении «0x21» (Слово состояния приемника, Телеметрия антенны - биты 11, 10) или NMEA сообщении \$GPSGG,RQUERY,...

Напряжение в антенну может быть выключено бинарным сообщением «0xC7». По умолчанию, питание антенны включено.

В зависимости от измеренного тока антенны, приемник формирует следующую телеметрию:

- «Измерения не производятся» (в случае выключения питания антенны сообщением«0хС7»)
- «Перегружена»: ток больше 32мА
- «Не подключена»: ток меньше 3мА
- «Норма»: ток находится в пределах от 3 до 32мА.

Монитор антенны обеспечивает также защиту от короткого замыкания путем ограничения тока на уровне 50мА. Таким образом, короткое замыкание в антенне не вызывает выход модуля из строя, а сопровождается выдачей телеметрии антенны «Перегружена».

- 1. Если напряжение питания антенны не подано на вывод V_ANT (например, при использовании пассивной антенны или внешней цепи питания активной антенны), то результаты измерения тока монитором могут оказаться некорректными. В таких случаях рекомендуется выключать питание антенны сообщением «0хС7»
- 2. Если рабочий ток антенны меньше 3мА или больше 32мА и обеспечены условия для нормального приема сигналов, то приемник будет выполнять целевую функцию по получению навигационных определений. В таком случае сообщения телеметрии антенны можно игнорировать

Следует иметь в виду, что при питании антенны через вывод V_ANT постоянное напряжение на выводе ANT чуть ниже напряжения на выводе V_ANT за счет падения напряжения в мониторе. Величина падения напряжения тем больше, чем больше ток антенны: типовое значение составляет 100мВ при токе 10мА. Это следует учитывать при выборе активной антенны.

2.18. Аппаратная телеметрия модуля

Модуль ежесекундно проводит самотестирование внутренних блоков и передает результаты в бинарном сообщении «0x21» (Слово состояния приемника) или NMEA сообщении \$GPSGG,RQUERY.

Результаты тестирования включают следующие данные:

- Бит 30: Телеметрия PLL (аналоговой части модуля)
- Биты 11, 10: Телеметрия антенны
- Бит 9: Телеметрия усиления ГЛОНАСС (аналоговой части модуля)
- Бит 8: Телеметрия усиления GPS (аналоговой части модуля)
- Бит 1: Результат теста RTC (тест выполняется при включении питания)
- Бит 0: Результат теста резервного ОЗУ (тест выполняется при включении питания).

Ошибка в телеметрии может свидетельствовать о нарушении работы конкретных блоков, что может быть причиной неработоспособности модуля.

2.19. Поддерживаемые протоколы обмена

Обмен с приемником производится по двум информационным протоколам: бинарному и NMEA. В дифференциальном режиме приемник обрабатывает дифференциальные поправки в соответствии со стандартом RTCM SC104 v2.3 (сообщения 1, 3, 31), которые должны подаваться в Порт #1.

Соответствие номера порта и типа информационного протокола устанавливается бинарным сообщением «0x50». Возможны 5 комбинаций распределения информационных протоколов по Портам #0 и #1 (Таблица 6).

Таблица 6. Распределение протоколов по портам приемника

Номер	Порт #0	Порт #1
1	Бинарный	NMEA
2	NMEA	Бинарный
3	NMEA	NMEA
4	Бинарный	RTCM
5	NMEA	RTCM

Описание сообщений бинарного протокола приведено в документе geos_binary_protocol_v3_0_rus.pdf, NMEA – в документе geos_nmea_protocol_v3_0_rus.pdf. Оба документа доступны на сайте http://geostar-navi.com.

По умолчанию, Порт #0 работает в бинарном протоколе, Порт #1 – в NMEA.

Для переключения в бинарный протокол из NMEA используется сообщение \$GPSGG,SWPROT*75.

2.19.1 Бинарный протокол

Бинарный протокол предоставляет расширенный набор выходных данных, включая «сырую» измерительную информацию, альманахи и эфемериды. Кроме того, через него производится формирование установок, запросов на выдачу данных, команд управления, а также обновление встроенного ПО приемника. Протокол включает в себя как входные, так и выходные сообщения. Выходные сообщения делятся на следующие группы:

- 1. 0x00...0x3F: беззапросные (т.е. формируемые автоматически)
- 2. 0х40...0х7F: ответы на установки
- 3. 0х80...0хВГ: ответы на запросы
- 4. 0xC0...0xFF: ответы на команды.

Часть беззапросных сообщений является отладочными (0x00...0x08), недоступными пользователю. Сообщения 0x00...0x1F являются маскируемыми, то есть могут быть отключены наложением маски (сообщение «0x4F»). По умолчанию все беззапросные маскируемые сообщения не выдаются. Сообщения 0x20...0x3F являются немаскируемыми, то есть не могут быть отключены. Ответы на установки, запросы и команды формируются приемником в ответ на соответствующие входные сообщения. Выходные сообщения сведены в Таблицу 7.

Таблица 7. Список выходных сообщений бинарного протокола

Номер сообщения	Сообщение
	Беззапросные сообщения
0x00x8	Отладочные данные
0x90xF	Резерв
0x10	Измерительная информация каналов
0x11	Строка навигационного кадра GPS
0x12	Строка навигационного кадра ГЛОНАСС
0x13	Вектор состояния НЗ
0x14	Временные параметры
0x15	Географические координаты: расширенный набор данных
0x16	Сообщение SBAS

0:47 0 45	December 1
0x170x1F	Резерв
0x20	Географические координаты: базовый набор данных
0x21	Текущая телеметрия приемника
0x22	Видимые КА
0x230x3D	Резерв
0x3E	Сообщение по включению приемника
0x3F	Ошибка при приеме данных
	Ответы на установки
0x40	Ответ на установку начальных параметров
0x41	Ответ на установку параметров портов RS232
0x42	Ответ на установку режима работы приемника
0x43	Ответ на установку параметров для решения НЗ
0x44	Ответ на установку темпа выдачи выходных данных
0x45	Ответ на установку параметров DGNSS
0x46	Ответ на установку параметров SBAS
0x47	Ответ на установку параметров режимов энергосбережения
0x48	Ответ на установку альманаха GPS
0x49	Ответ на установку альманаха ГЛОНАСС
0x4A	Ответ на установку эфемерид GPS
0x4B	Ответ на установку эфемерид ГЛОНАСС
0x4C	Ответ на установку параметров PPS
0x4D	Ответ на включение/исключение КА из решения НЗ
0x4E	Ответ на разрешение/запрет NMEA сообщений
0x4F	Ответ на разрешение/запрет бинарных сообщений
0x50	Ответ на установку соответствия протоколов портам RS232
0x510x7F	Резерв
	Ответы на запросы
0x80	Ответ на запрос начальных параметров
0x81	Ответ на запрос параметров портов RS232
0x82	Ответ на запрос режима работы приемника
0x83	Ответ на запрос параметров для решения Н
0x84	Ответ на запрос темпа выдачи выходных данных
0x85	Ответ на запрос параметров DGNSS
0x86	Ответ на запрос параметров SBAS
0x87	Ответ на запрос параметров режимов энергосбережения
0x88	Ответ на запрос альманаха GPS
0x89	Ответ на запрос альманаха ГЛОНАСС
0x8A	Ответ на запрос эфемерид GPS
0x8B	Ответ на запрос эфемерид ГЛОНАСС
0x8C	Ответ на запрос параметров PPS

0x8D	Ответ на запрос статуса КА при решении НЗ
0x8E	Ответ на запрос выдаваемых NMEA сообщений
0x8F	Ответ на запрос выдаваемых бинарных сообщений
0x90	Ответ на запрос соответствия протоколов портам RS232
0x910xBF	Резерв
-	Ответы на команды
0xC0	Ответ на команду изменения режима работы приемника ⁽¹⁾
0xC1	Ответ на команду запроса версии ПО
0xC2	Резерв
0xC3	Ответ на команду сохранения альманахов во Flash
0xC4	Ответ на команду включения/выключения режимов энергосбережения
0xC5	Резерв
0xC6	Ответ на команду запроса номера текущего порта
0xC7	Ответ на команду включения/выключения напряжения питания антенны
0xC8	Ответ на команду запроса конфигурации и настроек приемника
0xC90xCF	Резерв
0xD0	Зарезервировано для внутреннего использования
0xD1	Зарезервировано для внутреннего использования
0xD2	Зарезервировано для внутреннего использования
0xD30xFF	Резерв

Список входных сообщений приведен в Таблице 8.

- 1. Сообщения 0х00...0х3F: не используются
- 2. Сообщения 0х40...0х7F: установки
- 3. Сообщения 0х80...0хВF: запросы
- 4. Сообщения 0xC0...0xFF: команды

Таблица 8. Список входных сообщений бинарного протокола

Номер сообщения	Сообщение		
	Установки		
0x40	Установка начальных параметров		
0x41	Установка параметров портов RS232		
0x42	Установка режима работы приемника		
0x43	Установка параметров для решения Н3		
0x44	Установка темпа выдачи выходных данных		
0x45	Установка параметров DGNSS		
0x46	Установка параметров SBAS		
0x47	Установка параметров режимов энергосбережения		
0x48	Установка альманаха GPS		
0x49	Установка альманаха ГЛОНАСС		

0x4A	Установка эфемерид GPS		
0x4B	Установка эфемерид ГЛОНАСС		
0x4C	Установка параметров PPS		
0x4D	Включить/исключить КА из решения НЗ		
0x4E	Разрешить/запретить NMEA сообщения		
0x4F	Разрешить/запретить бинарные сообщения		
0x50	Установка соответствия протоколов портам RS232		
0x510x7F	Резерв		
	Запросы		
0x80	Запрос начальных параметров		
0x81	Запрос параметров портов RS232		
0x82	Запрос режима работы приемника		
0x83	Запрос параметров для решения НЗ		
0x84	Запрос темпа выдачи выходных данных		
0x85	Запрос параметров DGNSS		
0x86	Запрос параметров SBAS		
0x87	Запрос параметров режимов энергосбережения		
0x88	Запрос альманаха GPS		
0x89	Запрос альманаха ГЛОНАСС		
0x8A	Запрос эфемерид GPS		
0x8B	Запрос эфемерид ГЛОНАСС		
0x8C	Запрос параметров PPS		
0x8D	Запрос статуса КА при решении НЗ		
0x8E	Запрос выдаваемых NMEA сообщений		
0x8F	Запрос выдаваемых бинарных сообщений		
0x90	Запрос соответствия протоколов портам RS232		
0x910xBF	Резерв		
	Команды		
0xC0	Изменение режима работы приемника ⁽¹⁾		
0xC1	Запрос версии ПО		
0xC2	Перестарт приемника		
0xC3	Сохранение альманахов во Flash		
0xC4	Включение/выключение режимов энергосбережения		
0xC5	Переключение в NMEA протокол		
0xC6	Команда запроса номера текущего порта		
0xC7	Включение/выключение напряжения питания антенны		
0xC8	Команда запроса конфигурации и настроек приемника		
0xC90xCF	Резерв		
0xD0	Зарезервировано для внутреннего использования		

0xD1	Зарезервировано для внутреннего использования
0xD2	Зарезервировано для внутреннего использования
0xD30xFF	Резерв

2.19.2 NMEA протокол

Модуль поддерживает семь стандартных NMEA сообщений: GGA (GNS), GLL, GSA, GSV, RMC, VTG, ZDA (Таблица 9) и ряд нестандартных сообщений (Таблицы 9, 10).

Таблица 9. Список выходных NMEA сообщений

Мнемоника	Сообщение		
	Стандартные		
GGA	Данные местоположения		
GLL	Географические координаты – широта/долгота		
GNS	Данные местоположения GNSS		
GSA	Геометрический фактор ухудшения точности и активные спутники		
GSV	Видимые спутники		
RMC	Минимальный рекомендованный набор данных		
VTG	Скорость и курс относительно земли		
ZDA	Время и дата		
Нестандартные			
RQUERY	Версия ПО, телеметрия и конфигурация приемника		
NQUERY	Состав и темп выдачи NMEA сообщений		

Таблица 10. Список входных NMEA сообщений

Мнемоника	Сообщение		
Нестандартные			
SWPROT	Переключение в бинарный протокол		
SAVEFL	Сохранение альманахов во Flash		
CSTART	Холодный старт		
WSTART	Теплый старт		
HSTART	Горячий старт		
RQUERY	Запрос версии ПО, телеметрии и конфигурации приемника		
NQUERY	Запрос состава и темпа выдачи NMEA сообщений		
BDR	Установка скорости обмена порта RS232		
STOP	Установка количества стоповых бит порта RS232		
GGA ON, GGAOFF	Включение/выключение сообщения GGA/GNS		
GLL ON, GLLOFF	Включение/выключение сообщения GLL		

GSA ON, GSAOFF	Включение/выключение сообщения GSA
GSV ON, GSVOFF	Включение/выключение сообщения GSV
RMC ON, RMCOFF	Включение/выключение сообщения RMC
VTG ON, VTGOFF	Включение/выключение сообщения VTG
ZDA ON, ZDAOFF	Включение/выключение сообщения ZDA
NMEAV2, NMEAV3	Выбор версии стандарта NMEA
GNSOUT, GGAOUT	Выбор сообщения GGA или GNS
RATE	Установка темпа выдачи выходных данных
PSM ON, PSMOFF	Включение/выключение режимов энергосбережения/пробуждение приемника
ELEV	Установка маски угла места
DATP90 DATW84	Установка системы координат ПЗ-90.11 Установка системы координат WGS-84
NVSGPS NVSGLN NVSMIX	Установка режима работы только по GPS Установка режима работы только по ГЛОНАСС Установка совмещенного режима работы ГЛОНАСС+GPS

Стандартные сообщения могут формироваться как в соответствии с версией стандарта NMEA 0183 v2.x (по умолчанию), так и с версией v3.x.

Отличие версий состоит в следующем:

- v2.x: преамбула только «GP»; сообщение GNS не формируется
- v3.x: преамбулы «GP», «GN», «GL» в зависимости от используемой спутниковой системы; сообщение GNS формируется.

Для версии v3.x:

- Если приемник работает в совмещенном режиме (GPS+ГЛОНАСС), то преамбула «GN» добавляется к сообщениям GGA, GNS, GSA, GLL, RMC, VTG, ZDA. При этом формируются две строки GSA отдельно для ГЛОНАСС и GPS
- Если приемник работает в режиме только GPS, то преамбула «GP» добавляется к сообщениям GGA, GNS, GSA, GLL, RMC, VTG, ZDA
- Если приемник работает в режиме только ГЛОНАСС, то преамбула «GL» добавляется к сообщениям GGA, GNS, GSA, GLL, RMC, VTG, ZDA
- Сообщение GSV всегда делится на две части. Первыми передаются данные по спутникам GPS с преамбулой «GP», потом по спутникам ГЛОНАСС с преамбулой «GL».

В Таблице 11 приведено соответствие темпа выдачи, скорости обмена и объема выдаваемых NMEA сообщений.

Таблица 11. Темп выдачи NMEA сообщений в зависимости от скорости обмена RS232

Скорость, бит/с	GGA/GNS	RMC	GSA	GSV	VTG	GLL	ZDA
4800	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с	1 раз в 20 с	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с
9600	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с	1 раз в 2 с	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с
19200, 38400	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с	1 раз в 1 с
57600 и выше	С темпом выдачи данных (1, 2, 5 или 10 Гц)	С темпом выдачи данных (1, 2, 5 или 10 Гц)	С темпом выдачи данных (1, 2, 5 или 10 Гц)	1 раз в 1 с	С темпом выдачи данных (1, 2, 5 или 10 Гц)	С темпом выдачи данных (1, 2, 5 или 10 Гц)	1 раз в 1 с

2.20. Конструкция

Конструктивно приемник выполнен в виде ПП с односторонним монтажом элементов, закрытой металлическим электромагнитным экраном. Габаритный чертеж контактных площадок приведены на Рис. 3, 4 (не в масштабе). Размеры: миллиметры.

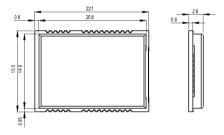


Рис. 3. Габаритный чертеж

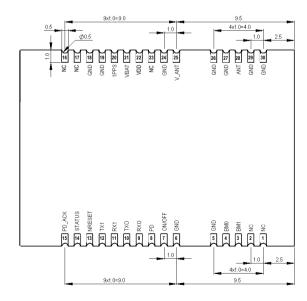


Рис. 4. Чертеж контактных площадок

2.21. Маркировка

Маркировка включает (Рис. 5):

GeoS-3E: название изделия

• нн.гг: номер недели и год выпуска

• Т03000001: серийный номер. Буква обозначает код производителя

• Точка-идентификатор вывода #1

• Логотип компании

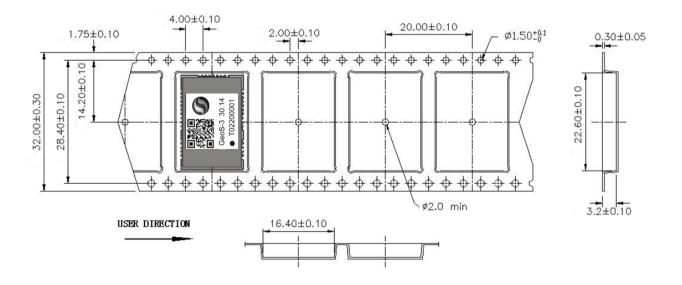

• Двухмерный штрих-код.

Рис. 5. Маркировка

2.22. Упаковка

Размеры: миллиметры.

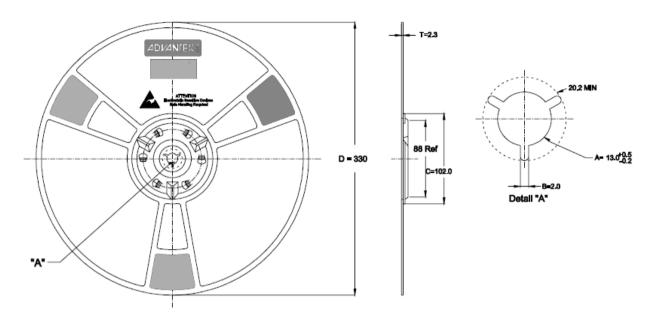


Рис. 6. Упаковка (в катушке 950 модулей)

2.23. Защита от статического электричества

Модули Геос-3E чувствительны к статическому электричеству

Несмотря на то, что модули имеют встроенную защиту от статического электричества, при их транспортировке, хранении и монтаже следует соблюдать меры защиты от статического электричества в соответствии с ГОСТ Р 53734.5.1-2009 и ГОСТ Р 53734.5.2-2009.

В дополнение к общим требованиям к организации защиты необходимо учитывать следующее:

- Рабочие места должны быть оборудованы заземленными электростатическими ковриками и браслетами. При монтаже/демонтаже использовать только полностью антистатические паяльные станции
- Во время проведения монтажных работ персонал должен быть одет в антистатическую одежду с надетым на руку браслетом. Не допускать контакта модулей с элементами одежды персонала
- В аппаратуре, использующей модули, при подключении внешних устройств (например, высокочастотных антенных кабелей) в первую очередь должен быть обеспечен электрический контакт земляных цепей подключаемого устройства и модуля
- В аппаратуре, использующей модули в комбинации с пассивной антенной, не допускать контактов человека с центральным контактом антенного элемента.

2.24. Соответствие международным экологическим стандартам

Модули ГеоС-3Е выпускаются с соблюдением норм директивы RoHS по ограничению использования вредных веществ в электронном оборудовании.

з. Использование по назначению

3.1. Типовая схема включения

Типовая схема включения модуля приведена на Рис. 7.

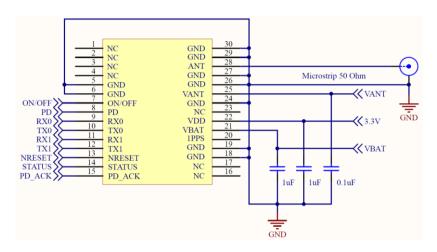


Рис. 7. Типовая схема включения

На Рис. 8 приведена упрощенная схема включения, в которой:

- Резервное батарейное напряжение и напряжение питания антенны не подключены. Питание антенны производится напряжением 3,3В через внешние цепи
- Не используются: управление включением/выключением через вывод ON/OFF, внешнее обнуление, сигнал пробуждения PD, индикатор состояния «АКТИВЕН»/«СОН».

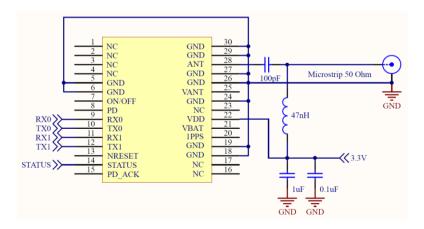


Рис. 8. Упрощенная схема включения

3.2. Последовательность подачи напряжения питания VDD и входных сигналов

Лог. «1» на входных сигнальных выводах модуля (кроме ANT) должна обеспечиваться одновременно с подачей VDD либо с задержкой. Пока VDD=0, входные сигналы модуля должны быть либо в лог. «0», либо в третьем состоянии.

з.з. Использование сигнала ON/OFF

Вход ON/OFF имеет внутреннюю подтяжку к напряжению VDD, поэтому, если сигнал не используется, вывод ON/OFF может быть оставлен неподключенным. Для выключения приемника сигнал ON/OFF должен быть установлен в лог. «0». Для включения приемника сигнал ON/OFF должен быть установлен в лог. «1» или переведен в третье состояние.

При ON/OFF=0 выходные сигналы модуля переходят в следующие состояния:

- ТХ0, ТХ1: лог. «1»
- 1PPS: лог. «0»
- PD ACK, STATUS: лог. «1».

з.4. Рекомендованное посадочное место на ПП пользователя

Для установки модулей ГеоС-3E на печатную плату (ПП) пользователя рекомендуется следующее посадочное место (Рис. 9). Размеры: миллиметры. Габариты модуля выделены голубым цветом.

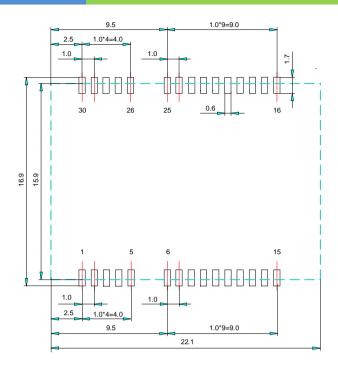


Рис. 9. Рекомендованное посадочное место

При трассировке внешних цепей модуля на печатной плате необходимо учитывать следующее:

- 1. Радиосигнал от антенны подается на контакт ANT модуля по микрополосковой линии. Волновое сопротивление этой линии должно быть максимально приближено к 50 Ом, а ее длина максимально короткой.
- 2. Контактные площадки GND должны быть соединены с корпусом ПП (цепь «земля» или «общий провод») линиями минимальной длины.
- 3. Сигнальные проводники на ПП должны быть отодвинуты от антенного входа ANT как можно дальше.
- 4. Исключить трассировку сигналов, особенно высокочастотных и тактовых, под платой модуля.

з.5. Конфигурация и настройки встроенного ПО

Конфигурация и настройки ПО модуля производятся через бинарный протокол. Полный список текущих настроек и параметров конфигурации может быть получен в ответ на команду «0xC8».

Перечень настроек и параметров конфигурации и их значений по умолчанию (заводских) приведен в Таблице 12. Под термином «заводские» понимаются параметры, запрограммированные в ПО приемника на этапе производства. Для возврата к заводским настройкам используется бинарное сообщение «0xC2».

Таблица 12. Список настроек и параметров конфигурации

#	Параметр	Значение по умолчанию	
1	Используемые ГНСС (только GPS, только ГЛОНАСС, ГЛОНАСС+GPS)	ГЛОНАСС+GPS	
2	Разрешение использования 2D	да	
3	Разрешение использования 2D для первого решения	да	
4	Работа с фиксированными координатами	нет	
5	Продолжительность экстраполяции	5c	
6	Фильтрация	динамическая	
7	Дифференциальный режим	запрещен	
8	Источник дифференциальных поправок	выбирается автоматически	
9	PRN SBAS	выбирается автоматически	
10	Темп выдачи выходных данных	1Гц	
11	Параметры Портов #0 и #1	115200, 1 стоповый, без четности	
12	Соответствие протоколов портам	Порт #0 – бинарный, Порт #1 – NMEA	
13	Маска GDOP	50	
14	Маска угла места	5°	
15	Маска уровня сигнала	10дБГц	
16	Порог статической навигации	0,3м/с	
17	Профиль динамики пользователя	пешеходно-автомобильный	
18	Режимы энергосбережения	выключены	
19	Разрешенный режим энергосбережения	RELAXED FIX [®]	
20	Минимальная продолжительность состояния «АКТИВЕН»	2c	
21	Максимальная продолжительность состояния «АКТИВЕН»	5c	
22	Временной интервал между переходами в состояние «АКТИВЕН» для режима RELAXED FIX [®]	60c	
23	«АКТИВЕТТ» для режима КЕСАХЕВ ГТХ Продолжительность состояния «АКТИВЕН» после получения первого решения	3c	
24	Начальные параметры	Координаты пользователя, м: X=0.0, Y=0.0, Z=0.0 Сдвиг местного времени относительно UTC, с: 0 Скорость ухода ШВ приемника, м/с: 0 Сдвиг ШВ ГЛОНАСС относительно ШВ GPS, м: 0	
25	Параметры 1PPS	Выдается, полярность – положительная, привязка – к шкале времени GPS, длительность – 1мс, сдвиг – 0нс	
26	Напряжение питания антенны	Включено	
27	NMEA сообщения	GGA, GSA, GSV, RMC – выдаются; GNS, VTG, GLL, ZDA – не выдаются; соответствие версии NMEA – v2.x	
28	Маскируемые бинарные пакеты 0x000x1F	не выдаются	
29	Система координат (ПЗ-90.11, WGS-84)	WGS-84	
30	Измерения ПД в сообщении 0x10	не сглаженные	
31	Использование КА в дифференциальном режиме	только те КА, для которых имеется корректирующая информация	

После получения новых данных настройки или конфигурации приемник инициирует операцию их сохранения во Flash памяти. После завершения операции приемник выдает сообщение «0xC3» с кодом «3», если сохранение данных прошло успешно, и с кодом «0», если операция не была завершена. Код «0» может быть сформирован в случае, если приемник уже находится в процессе записи данных во Flash, например, при автосохранении альманахов или при сохранении предыдущих данных настройки.

Сохранение данных во Flash занимает время не более 1c.

3.5.1 Управление настройками последовательных портов

Настройка параметров обмена последовательных портов производится, используя:

- Бинарное сообщение «0х41»: оно позволяет устанавливать параметры обоих портов (Порт #0, Порт #1)
- NMEA сообщения \$GPSGG,BDR--- (установка скорости обмена) и \$GPSGG,STOP-- (установка количества стоповых бит). В этом случае настройки применимы к тому порту, который работает в NMEA.

3.5.2 Профили динамики потребителя

Таблица 13. Характеристики профиля динамики потребителя

Профиль	Характеристики
Пешеходно-автомобильный	Максимальная скорость – 75м/с Максимальная вертикальная скорость – 15м/с Максимальная высота – 10000м Ускорение – до 2g
Морской	Максимальная скорость – 30м/с Максимальная вертикальная скорость – 5м/с Максимальная высота – 500м Ускорение – до 0,5g
Авиационный	Максимальная скорость – 515м/с Максимальная вертикальная скорость – 100м/с Максимальная высота – 18000м Ускорение – до 3g, 2D режим запрещен

Управление профилем динамики описано в разделе 3.6.5.1.

з.б. Особенности работы в различных режимах

3.6.1 Старт приемника после включения

После подачи питания приемник стартует автоматически, в режиме полного потребления (режимы энергосбережения не активизированы), не требуя дополнительных команд для начала работы. По умолчанию, Порт #0 настроен на бинарный протокол, Порт #1 – на NMEA.

В процессе работы приемник автоматически формирует и передает 1 раз в секунду в бинарном протоколе Слово состояния приемника и состояние Регистра конфигурации приемника (сообщение «0x21»). Слово состояния приемника содержит результаты считывания аппаратной телеметрии в составе:

- Бит 30: Телеметрия PLL (аналоговой части модуля)
- Биты 11, 10: Телеметрия антенны
- Бит 9: Телеметрия усиления ГЛОНАСС (аналоговой части модуля)
- Бит 8: Телеметрия усиления GPS (аналоговой части модуля)
- Бит 1: Результат теста RTC (тест выполняется по включению питания)
- Бит 0: Результат теста резервного ОЗУ (тест выполняется по включению питания).

Номер версии и дата ПО, ее контрольная сумма и серийный номер приемника выдаются в ответ на команду «0xC1» бинарного протокола.

В NMEA протоколе имеется нестандартное сообщение \$GPSGG,RQUERY,..., которое передает следующие данные:

- Номер версии и дату ПО
- Серийный номер приемника
- Слово состояния приемника
- Регистр конфигурации приемника.

Сообщение \$GPSGG,RQUERY,... формируется:

- В ответ на запрос \$GPSGG,RQUERY*70
- Автоматически однократно при старте приемника
- В режимах энергосбережения: однократно при переходе из состояния «СОН» в состояние «АКТИВЕН» и при переходе из состояния «АКТИВЕН» в состояние «СОН»
- Периодически 1 раз в секунду, если выдача всех NMEA сообщений запрещена.

При наличии в слежении достаточного количества спутников и выделенной эфемеридной информации приемник решает навигационную задачу и выдает навигационные данные как в бинарном, так и в NMEA протоколах.

Признак достоверности решения НЗ формируется в Бите 15 *Слова состояния приемника*, которое передается в бинарных сообщениях «0x20» и «0x21».

В процессе работы при пропадании решения приемник выдает в NMEA сообщениях последние достоверные навигационные данные. При этом в GGA сообщении в поле «Режим работы приемника» передается «0» (координаты недоступны или недостоверны).

В процессе работы приемник формирует на выводе STATUS сигнал, частота следования и длительность которого характеризует текущий статуса модуля (раздел 2.13).

После включения питания секундная метка 1PPS выдается сразу, однако ее временное положение неопределенно до решения H3. Как только получено достоверное решение H3 (Слово состояния приемника, Бит 15=1), метка времени начинает выдаваться синхронно с заданной шкалой времени. После потери связи со спутниками метка времени продолжает формироваться, при этом находясь без управления, и ошибка ее временного положения при этом будет определяться скоростью ухода шкалы времени приемника (сдвигом частоты TCXO). Временное положение метки времени учитывает задержку, вносимую приемником, и не учитывает задержку, вызванную распространением сигналов в антенном кабеле. Учесть эту задержку можно, введя сдвиг секундной метки, что предусмотрено соответствующей командой бинарного протокола (пакет «0х4С»). Здесь же можно установить параметры метки времени.

3.6.2 Холодный, теплый, горячий старт

В зависимости от наличия альманаха, времени, данных местоположения и интервала времени, в течение которого приемник находился в выключенном состоянии, приемник автоматически стартует в холодном, теплом или горячем старте. Холодный старт подразумевает отсутствие в приемнике достоверных альманахов, эфемерид, времени и данных местоположения. По времени холодный старт — самый продолжительный. Теплый старт подразумевает, что приемник имеет альманахи, известно его местоположение и время. Горячий старт подразумевает наличие альманахов, данных местоположения, времени, а также эфемерид, поэтому приемник тратит в этом старте наименьшее количество времени.

Приемник реализует теплый или горячий старт при следующих условиях.

- 1. Резервное батарейное питание VBAT подключено:
 - VDD=выкл→VDD=вкл
- 2. Основное напряжение питания VDD подключено; резервное батарейное питание безразлично:
 - ON/OFF=0→ON/OFF=1

NRESET=0→NRESET=1.

Также имеется возможность организовать программный старт приемника. Для этого в бинарном протоколе используется сообщение «0xC2»: код «0» соответствует горячему старту, код «1» – теплому старту, код «3» – холодному. При работе по NMEA протоколу используются следующие сообщения:

- \$GPSGG,CSTART*6B холодный старт
- \$GPSGG,WSTART*7F теплый старт
- \$GPSGG,HSTART*60 горячий старт.

Для ускорения вхождения в связь в приемник может быть загружена инициализирующая информация в составе: время/дата UTC, XYZ координаты потребителя, смещение ОГ, сдвиг шкалы времени ГЛОНАСС относительно GPS. Данная информация передается в сообщении «0x40».

3.6.3 Особенности управления модулем по бинарному протоколу

Бинарный протокол предоставляет возможность установки всех настроек и параметров конфигурации модуля, перечисленных в Таблице 13.

Переключение в NMEA протокол производится командой «0xC5» или сообщением «0x50». Команда «0xC5» также задает следующие настройки:

- Маска выдаваемых NMEA сообщений
- Версия протокола NMEA 0183
- Выбор GGA или GNS (для NMEA 0183 v3.x)
- Скорость обмена, количество стоповых и формирование бита четности.

При переключении в NMEA протокол перестарта приемника не происходит.

3.6.4 Особенности управления модулем по **NMEA** протоколу

В отличие от бинарного, NMEA протокол предоставляет возможность ограниченного управления настройками в следующем объеме:

- Установка параметров обмена по последовательным портам:
 - \$GPSGG,BDR---* скорость обмена

- \$GPSGG,STOP--* количество стоповых бит
- Включение/выключение конкретных NMEA сообщений:
 - \$GPSGG,GGA ON*08, \$GPSGG,GGAOFF*66 GGA(GNS)
 - \$GPSGG,GLL ON*1C, \$GPSGG,GLLOFF*72 GLL
 - \$GPSGG,GSA ON*1C, \$GPSGG,GSAOFF*72 GSA
 - \$GPSGG,GSV ON*0B, \$GPSGG,GSVOFF*65 GSV
 - \$GPSGG,RMC ON*15, \$GPSGG,RMCOFF*7B RMC
 - \$GPSGG,VTG ON*0C, \$GPSGG,VTGOFF*62 VTG
 - \$GPSGG,ZDA ON*16, \$GPSGG,ZDAOFF*78 ZDA.
- Выбор версии стандарта NMEA 0183:
 - \$GPSGG,NMEAV2 v2.x
 - \$GPSGG,NMEAV3 v3.x
- Выбор между GGA и GNS (для версии v3.x): \$GPSGG,GGAOUT, \$GPSGG,GNSOUT
- Установка темпа выдачи выходных данных: \$GPSGG,RATE--*
- Включение/выключение режимов энергосбережения/пробуждение приемника (для режима FIX-BY-REQUEST®): \$GPSGG,PSM ON*07, \$GPSGG,PSMOFF*69 (подробнее см. раздел <u>3.6.5.4</u>)
- Установка маски угла места: \$GPSGG,ELEV--*
- Установка системы координат:
 - \$GPSGG,DATP90*60 Π3-90.11
 - o GPSGG,DATW84*62 WGS-84
- Выбор ГНСС:
 - GPSGG,NVSGPS*67 только GPS
 - GPSGG,NVSGLN*66 только ГЛОНАСС
 - о GPSGG,NVSMIX*7F совмещенный ГЛОНАСС+GPS.

Переключение в бинарный протокол производится сообщением \$GPSGG,SWPROT*75.

3.6.5 Режимы работы

3.6.5.1 Автономный режим

По умолчанию приемник работает в совмещенном ГЛОНАСС+GPS режиме, однако может быть установлен в режим только GPS или только ГЛОНАСС (бинарное сообщение «0х42» или NMEA сообщения \$GPSGG,NVSGPS*67; \$GPSGG,NVSGLN*66; \$GPSGG,NVSMIX*7F).

Система координат, в которой производится расчет навигационных определений, может быть установлена WGS-84 или ПЗ-90.11 (бинарное сообщение «0х42» или NMEA сообщения GPSGG,DATW84*62, GPSGG,DATP90*60).

По умолчанию, приемник решает НЗ в режиме 3D. При недостаточном количестве спутников приемник может перейти в режим 2D (если это разрешено в сообщении «0х43»).

Если после решения НЗ произошла потеря связи со спутниками, приемник может в течение определенного времени (от 1 до 10 секунд) продолжать выдавать данные местоположения, основываясь на знании вектора скорости (режим экстраполяции). Установка разрешения использования экстраполяции и ее продолжительности производятся через сообщение «0х43».

Сообщение «0х43» устанавливает также профиль динамики пользователя. При задании автоматического выбора (код «0») приемник автоматически производит подстройку параметров динамической фильтрации и системы оценки качества НЗ в зависимости от измеренной динамики потребителя. Пешеходно-автомобильный и морской профили динамики (коды «1», «2») рассчитаны на низкую динамику потребителя. И наоборот, авиационный профиль (код «3») рассчитан на высокую динамику.

Приемник может работать в режиме фиксированных координат (устанавливается «0x42», подробнее см. раздел <u>3.6.5.3</u>), который предполагает, что потребитель неподвижен. Такой режим может использоваться, в частности, для временных приложений.

Могут быть установлены три параметра маски: маска фактора ухудшения точности (GDOP), маска угла места и маска уровня сигнала («0х43»). Маска угла места (угол отсечки КА) может быть также установлена через NMEA сообщение \$GPSGG,ELEV--. Если при решении НЗ рассчитанное значение GDOP больше соответствующей маски, такое решение НЗ считается недостоверным. Спутники с углом места меньше заданной маски не используются в решении НЗ. Спутники с уровнями сигналов меньше заданной маски не используются в решении НЗ.

Порог статической навигации устанавливается сообщением «0х43». Приемник выдает нулевое значение скорости, если измеренное значение скорости не превышает этот порог.

Темп выдачи может быть установлен 1 (по умолчанию), 2, 5 или 10Гц бинарным сообщением «0х44» или NMEA сообщениями \$GPSGG,RATE01*6B; \$GPSGG,RATE02*68, \$GPSGG,RATE10*6B.

Любой спутник может быть исключен из решения НЗ путем выдачи соответствующей маски в бинарном протоколе («0x4D»). Информация о выключенных спутниках стирается после выключения питания, таким образом, при новом старте все спутники будут вновь разрешены к использованию.

В *Слове состояния приемника* в составе сообщений «0x20» и «0x21» передается набор важных индикаторов состояний решения НЗ и приемника в целом:

- Бит 24: Признак выдачи координат по результатам экстраполяции. Если бит установлен в «1», текущие координаты экстраполированные
- Бит 21: Индикатор состояния приемника. Бит принимает значение «0» в состоянии «СОН» и «1» в состоянии «АКТИВЕН»
- Бит 20: Признак работы в дифференциальном режиме. Бит принимает значение «0» в автономном режиме и «1» в дифференциальном режиме
- Бит 15: Признак наличия решения Н3. Бит принимает значение «0», если нет решения Н3 или оно недостоверно, и «1», если решение Н3 достоверно.

Если все NMEA сообщения разрешены, они выдаются в следующей последовательности (Рис. 10):

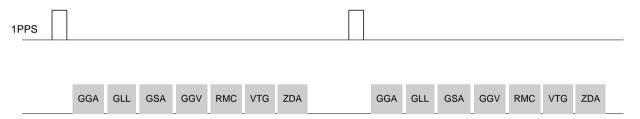


Рис. 10. Последовательность выдачи NMEA сообщений

В GGA сообщении передается поле *Режим работы приемника*, который в зависимости от режима работы приемника имеет следующие состояния:

- «0», если координаты недостоверны
- «1», если координаты достоверны (автономный режим)
- «2», если координаты достоверны (дифференциальный режим)
- «6», если приемник находится в режиме экстраполяции координат
- «7», если приемник работает в режиме фиксированных координат.

В сообщениях GNS, GLL, RMC, VTG передается поле *Индикатор режима*, в котором передается символ «А», если данные достоверны (автономный режим), символ «D», если данные достоверны (дифференциальный режим), символ «N», если данные недостоверны или отсутствуют, символ «Е» – в режиме экстраполяции, символ «М» – в режиме фиксированных координат.

Дополнительно в сообщениях GLL и RMC передается поле *Статус*, которое принимает значение «А» (достоверные данные) для значения *Индикатора режима* «А», «D» и значение «V» (недостоверные данные) для значений *Индикатора режима* «E», «М», «N».

3.6.5.2 Дифференциальные режимы

Источники дифференциальных поправок:

- RTCM: используются дифференциальные коррекции стандарта RTCM SC104 v2.3, формируемые контрольно-корректирующей станцией и поступающие на Порт #1 приемника.
- SBAS: используются широкозонные дифференциальные коррекции, передаваемые KA SBAS.

Настройки дифференциального режима производятся бинарным сообщением «0x45»:

- Слово 1, Бит 0: *Разрешение дифференциального режима.* Если установлен код «0» (по умолчанию), то дифференциальный режим запрещен; если «1», то разрешен
- Слово 1, Бит 1: Выбор спутников для использования в дифференциальном режиме. Если установлен код «0» (по умолчанию), то в НЗ используются только те КА, для которых имеется корректирующая информация; если «1», то в НЗ используются все КА
- Слово 2: Источник дифференциальных поправок:
 - Код «0»: автоматический выбор. В этом случае, при наличии в зоне видимости КА SBAS и при отсутствии на входе дифференциальных коррекций RTCM, приемник автоматически обрабатывает сигналы SBAS и использует выделенную информацию при решении НЗ. Если в приемник поступают коррекции RTCM, они имеют приоритет, и в этом случае КА SBAS игнорируются
 - Код «1»: RTCM. В этом случае приемник использует только коррекции RTCM, принятые по последовательному Порту #1, игнорируя KA SBAS
 - Код «2»: SBAS. В этом случае приемник использует только информацию с КА SBAS, игнорирую прием коррекций RTCM.

3.6.5.2.1 RTCM

Корректирующие поправки формируются внешней контрольно-корректирующей станцией и предназначены для устранения ошибок измерений в приемнике, вызванных задержкой распространения сигнала в тропосфере и ионосфере, неточностью оперативной информации, формируемой навигационными КА, и другими источниками ошибок.

Приемник принимает сообщения с номерами 1, 3 и 31. Ниже приведено их краткое описание.

Сообщение 1. Дифференциальные коррекции сигналов GPS (Differential GPS corrections)

В данном сообщении передаются значения поправок (pseudorange corrections) и скорость изменения поправок (range-rate corrections), относящиеся к измерениям псевдодальности сигналов GPS. Также передается точность передаваемых коррекций (UDRE: User differential range error).

Сообщение 3. Параметры корректирующей станции GPS (GPS Reference Station Parameters)

Сообщение содержит координаты контрольно-корректирующей станции в геоцентрической системе координат WGS-84.

Сообщение 31. Дифференциальные коррекции сигналов ГЛОНАСС (Differential GLONASS corrections)

Содержание сообщения аналогично сообщению 1, но коррекции относятся к измерениям псевдодальности сигналов ГЛОНАСС.

3.6.5.2.2 SBAS

Для передачи корректирующей информации в SBAS используются геостационарные спутники. Передаваемая КА SBAS информация содержит данные о целостности (integrity), непосредственно коррекции, а также данные, позволяющие использовать спутники для навигации. Структура сигналов аналогична структуре сигнала GPS C/A, но скорость передачи информации равна 500 бит/с.

Ниже приведено краткое описание принимаемых данных.

Сообщение 0. Прекратить использование системы (Do not use for safety application)

Сообщение передается во время тестирования системы. Прием данного сообщения сигнализирует о необходимости прекратить использование системы как минимум на одну минуту.

Сообщение 1. Macka PRN спутников (PRN Mask Assignment)

Номера КА, для которых передаются корректирующие данные.

Сообщение 2-5. Коррекции быстроменяющихся ошибок (Fast Corrections)

Сообщение содержит поправку к псевдодальности (pseudorange corrections), скорость изменения поправки (range-rate corrections), индикатор точности (UDREI: user differential range error indicator). В сообщении содержится информация для не более, чем 13 КА.

Сообщение 6. Целостность системы (Integrity Information)

Сообщение содержит индикатор точности для всех КА, отслеживаемых системой, а также признаки, указывающие, что не производится формирование коррекций для данного КА (Not monitored), или необходимо прекратить использование КА для навигации (Do not use).

Сообщение 25. Коррекции медленноменяющихся ошибок (Long-term Satellite Error Corrections)

Сообщение содержит оценку медленноменяющихся ошибок эфемерид и часов КА, в системе координат WGS-84.

Сообщение 24. Смешанные коррекции для быстро и медленноменяющихся ошибок (Mixed Fast Corrections/Long-term Satellite Error Corrections)

Сообщение содержит как коррекции быстроменяющихся ошибок, так и коррекции медленноменяющихся ошибок навигационных КА.

Сообщение 25. Маска точек сетки ионосферных коррекций (Ionospheric Grid Point Masks)

Сообщение содержит номера точек ионосферной сетки, которые используются при вычислениях задержки в ионосфере. При этом параметры модели ионосферы, передаваемые навигационными спутниками GPS, не используются.

Сообщение 26. Значения задержек для точек ионосферной сетки (Ionospheric Delay Corrections)

Сообщение содержит значения вертикальных задержек для точек ионосферной сетки, номера которых были переданы в сообщении 25. Имея значения задержек в ионосфере в определенных точках, можно с более высокой точностью, по сравнению с моделью Клобучара, вычислить задержку распространения сигнала в ионосфере.

Для приема и обработки сигналов KA SBAS в приемнике используются 2 канала слежения. Настройка режима использования SBAS производится сообщением «0х46»:

- Слово Способ выбора PRN SBAS:
 - о Код «0»: PRN задаются пользователем. Номера КА (кодовых последовательностей) для обоих каналов приема задаются в словах 2 и 3 сообщения «0х46» (в диапазоне от 120 до 138)
 - Код «1»: PRN выбираются автоматически. В этом случае приемник автоматически осуществляет поиск всех возможных КА SBAS. При наличии

в слежении более 2-х КА используется информация, принятая только с двух КА с большим уровнем сигнала

• Слова *Номер PRN для первого/второго канала приема KA SBAS* вручную устанавливают номер кодовой последовательности для первого и второго канала слежения приемника.

Принятые с КА SBAS декодированные информационные символы выдаются приемником в бинарном сообщении «0x16» (250 бит в секунду).

3.6.5.3 Режим с фиксацией координат (временные приложения)

Режим с фиксацией координат предназначен для временных применений. Приемник использует XYZ координаты из состава инициализирующих данных в сообщении «0x40». В этом режиме:

- Приемник вычисляет только смещение и скорость ухода своей ШВ с целью формирования секундной метки времени (1PPS)
- Приемник выдает нулевую скорость и XYZ координаты, введенные в него в составе инициализирующих данных.

При этом важно помнить, что точность формирования метки времени в этом случае будет напрямую зависеть от точности введенных в приемник координат.

Специально для этого класса приложений предусмотрено бинарное сообщение «0x14», в котором передаются следующие параметры:

- Время UTC, локальное время
- Оценка точности 1PPS
- Время GPS с начала недели, время ГЛОНАСС с начала суток
- Номер недели GPS
- Номер суток внутри четырехлетия ГЛОНАСС
- Номер четырехлетия ГЛОНАСС
- Расхождение UTC и времени GPS
- Признак планируемой коррекции UTC.

Временная привязка выдаваемых сообщений (бинарных и NMEA) к активному фронту (переход из лог. «0» в лог. «1») импульса 1PPS приведена на Рис. 11.

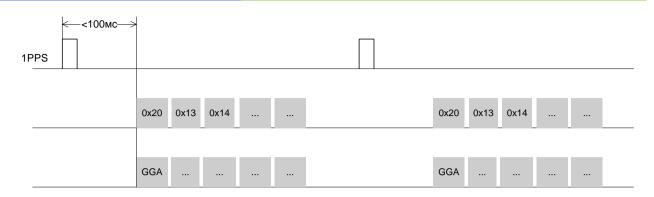


Рис. 11. Временная привязка сообщений к секундной метке времени

В бинарном протоколе начало выдачи сообщения «0x20» (немаскируемого) – не позднее 100мс от активного фронта 1PPS.

В NMEA протоколе начало выдачи первого разрешенного сообщения (GGA на примере Рис. 19) – не позднее 100мс от активного фронта 1PPS.

3.6.5.4 Режимы энергосбережения

Приемник поддерживает два режима энергосбережения: RELAXED FIX® и FIX-BY-REQUEST®.

В режиме RELAXED FIX® приемник самостоятельно чередует по внутренней циклограмме состояния «СОН» и «АКТИВЕН» и выдает данные навигационных определений с темпом, много ниже стандартного (1Гц).

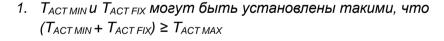
Режим FIX-BY-REQUEST® характеризуется переходом из состояния «COH» в состояние «АКТИВЕН» (пробуждение) по запросу пользователя.

В состоянии «СОН» типовой ток потребления модуля составляет 4мА, в состоянии «АКТИВЕН» - 41мА. Средний ток в режиме энергосбережения (мА) может быть получен на основе следующего выражения:

 $(T_{ACT}\cdot 41 + T_{SLP}\cdot 4)/(T_{ACT} + T_{SLP})$, где:

 T_{ACT} – длительность состояния «АКТИВЕН», (c);

 T_{SLP} – длительность состояния «СОН», (c);


 $T_{ACT} + T_{SLP} = T_{ACT-ACT}$.

Таким образом, основным выигрышем от использования режимов энергосбережения является существенное снижение среднего тока потребления.

Настройка режимов производится бинарным сообщением «0х47». Настраиваются следующие параметры:

- Выбор типа режима (RELAXED FIX® или FIX-BY-REQUEST®)
- Минимальная продолжительность состояния «АКТИВЕН» (Т_{АСТ МІN}), в секундах. Этот параметр задает минимальное время, выделенное приемнику на обнаружение сигналов после пробуждения. Если в течение этого времени координаты не получены, приемник остается в активном состоянии до истечения Т_{АСТ МАХ}. Если в течение этого времени получены достоверные координаты, приемник продолжает работать и выдавать координаты в течение времени Т_{АСТ ГІХ}, после чего самостоятельно переходит в «СОН». Задается для обоих режимов. Минимальное значение 2с
- Максимальная продолжительность состояния «АКТИВЕН» (T_{ACT MAX}), в секундах. Этот параметр задает максимальное время, выделенное приемнику на обнаружение сигналов после пробуждения. Если в течение этого времени спутники не обнаружены, и не получены достоверные координаты, приемник самостоятельно переходит в «СОН». Не может быть меньше Т_{ACT MIN}. Задается для обоих режимов
- Продолжительность состояния «АКТИВЕН» после получения первого решения (Т_{АСТ FIX}), в секундах. Этот параметр задает время после получения первого решения, в течение которого приемник остается в состоянии «АКТИВЕН» и выдает данные навигационных определений. Минимальное значение (0c) означает, что приемник переходит в «СОН» сразу после получения первого достоверного решения НЗ.
- Временной интервал между переходами в состояние «АКТИВЕН» для режима RELAXED FIX® (Т_{АСТ-АСТ}), в секундах. Этот параметр задает интервал времени между пробуждениями. Не может быть меньше Т_{АСТ МАХ} и (Т_{АСТ МІN} + Т_{АСТ FIX}). Диапазон значений: 10...120с.

2. Актуальное время от момента пробуждения до выдачи навигационных определений может оказаться больше временного интервала $T_{ACT\,MAX}$

Вход/выход из режимов энергосбережения и пробуждение производится бинарным сообщением «0xC4» или NMEA сообщением \$GPSGG,PSM ON*07, \$GPSGG,PSMOFF*69.

1. Приемник переходит в режим энергосбережения только при наличии во Flash памяти актуальных альманахов и если есть решение НЗ. Если на момент подачи команды на включение

режима энергосбережения решения НЗ нет, то включение режима будет отложено до получения достоверного решения

- 2. В режимах энергосбережения все входные сообщения, кроме бинарного сообщения «0хС4» или NMEA сообщений \$GPSGG,PSM ON*07, \$GPSGG,PSMOFF*69, игнорируются
- 3. Если приемник находится в режиме энергосбережения, то для задания иных настроек необходимо выйти из режима энергосбережения, произвести установку необходимых параметров, заем вновь включить режим энергосбережения

Кроме того, выход из режимов энергосбережения может производиться перестартом приемника (ON/OFF=0 \rightarrow ON/OFF=1, NRESET=0 \rightarrow NRESET=1, VDD=выкл \rightarrow VDD=вкл).

Дли индикации состояния – «АКТИВЕН» или «СОН» – модуль управляет состоянием вывода PD_АСК следующим образом:

«AKTИBEH»: PD_ACK=1«COH»: PD_ACK=0.

В состоянии «СОН» приемник выдает по последовательным портам:

- Бинарный протокол: ежесекундно сообщение «0x21», где в *Слове состояния* приемника Бит 21 (Индикатор состояния приемника) устанавливается в «0»; в словах 5, 6 передается «0»
- NMEA протокол: стандартные сообщения (кроме GSV) в соответствии с маской сообщений NMEA, с заданным темпом выдачи выходных данных, и однократно при переходе в «COH» сообщение \$GPSGG,RQUERY,... в Слове состояния приемника которого Бит 21 устанавливается в «0».

В состоянии «АКТИВЕН» приемник выдает по последовательным портам:

- Бинарный протокол: сообщения в соответствии с маской бинарных сообщений, с заданным темпом выдачи выходных данных, и ежесекундно сообщение «0x21», где в Слове состояния приемника Бит 21 (Индикатор состояния приемника) устанавливается в «1»
- NMEA протокол: стандартные сообщения (кроме GSV) в соответствии с маской сообщений NMEA, с заданным темпом выдачи выходных данных, и однократно при переходе в «АКТИВЕН» сообщение \$GPSGG,RQUERY,... в Слове состояния приемника которого Бит 21 устанавливается в «1».

Временные диаграммы выдачи сообщений по последовательным портам приведены на Рис. 12 (темп выдачи 1Гц).

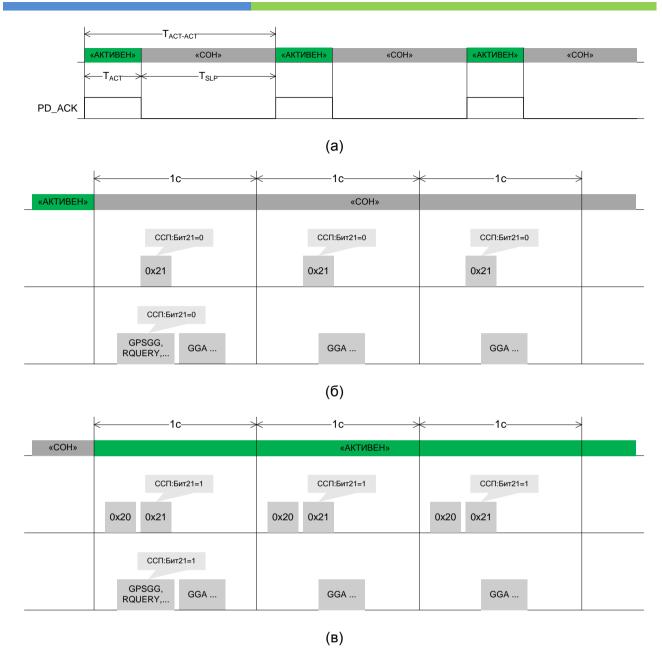
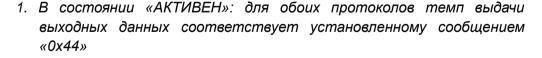



Рис. 12. Временные диаграммы в режимах энергосбережения: (а) PD_ACK; (б) выдача выходных сообщений в состоянии «СОН»; (в) выдача выходных сообщений в состоянии «АКТИВЕН»

2. В состоянии «COH»: темп выдачи разрешенных стандартных NMEA сообщений (GGA/GNS, GLL, GSA, RMC, VTG, ZDA) равен установленному сообщением «0х44»

При включении режимов энергосбережения ряд настроек автоматически принимает следующие значения (Таблица 14). Эти настройки не сохраняются во Flash, то есть при

выходе из режима энергосбережения актуальными будут настройки, с которыми приемник работал до входа в режим.

Таблица 14. Настройки в режимах энергосбережения

#	Параметр	Значение	
1	Режим (GPS, ГЛОНАСС, ГЛОНАСС+GPS)	как установлено	
2	Разрешение использования 2D	как установлено	
3	Разрешение использования 2D для первого решения как установлено		
4	Работа с фиксированными координатами	нет	
5	Экстраполяция	выключена	
6	Фильтрация	динамическая	
7	Дифференциальный режим	запрещен	
8	Темп выдачи выходных данных	как установлено	
9	Параметры Портов #0 и #1	как установлено	
10	Соответствие протоколов портам	как установлено	
11	Маска GDOP	как установлено	
12	Маска угла места	как установлено	
13	Маска уровня сигнала	30дБГц	
14	Порог статической навигации	как установлено	
15	Профиль динамики пользователя	Пешеходно-автомобильный	
16	Параметры 1PPS	Выдается, параметры – как установлено	
17	Напряжение питания антенны	как установлено	
18	NMEA сообщения	GSV – не выдается; остальные – как установлено; версия NMEA стандарта – как установлено	
19	Маскируемые бинарные пакеты 0x000x1F	как установлено	

В обоих режимах энергосбережения приемник самостоятельно переходит в состояние «АКТИВЕН» (пробуждение) каждые 15 минут для обновления ряда внутренних параметров и каждые 30 минут для обновления эфемерид. Моменты времени выровнены с UTC. Ниже приведен пример для одного часа, начиная с 00ч:00м:00с UTC:

- 00ч:00м:00с, 00ч:30м:00с: пробуждение для набора эфемерид; продолжительность от 1 до 2 минут
- 00ч:15м:00с, 00ч:45м:00с: пробуждение для обновления внутренних параметров; продолжительность от 20 до 80 секунд.

В обоих режимах энергосбережения поведение вывода STATUS следующее: в состоянии «СОН» на выводе формируется лог. «0»; в состоянии «АКТИВЕН» – как описано в разделе 2.15.

3.6.5.4.1 RELAXED FIX®

Это режим самостоятельного циклического перехода из состояния «АКТИВЕН» в состояние «СОН» и обратно. Пользователь переводит приемник в режим и выводит его из режима командами по последовательному порту. Вся основная циклограмма перехода из состояния «АКТИВЕН» в состояние «СОН» и обратно производится модулем автономно. Максимальный интервал между переходами в активное состояние в этом режиме составляет 120 секунд.

Вывод PD в этом режиме не используется. Ниже описано действие команды «0xC4» для режима RELAXED FIX®, в зависимости от того, когда она приходит.

Состояние «АКТИВЕН»:

0x0000 выход из режима0x0001 вход в режим.

Состояние «СОН»:

0x0000 выход из режима0x0001 не имеет действия.

Ниже описано действие NMEA сообщений \$GPSGG,PSM ON*07, \$GPSGG,PSMOFF*69, в зависимости от того, когда они приходят.

Состояние «АКТИВЕН»:

\$GPSGG,PSMOFF*69
 \$GPSGG,PSM ON*07
 выход из режима
 вход в режим.

Состояние «СОН»:

\$GPSGG,PSMOFF*69 выход из режима
 \$GPSGG,PSM ON*07 не имеет действия.

Примеры временных диаграмм выхода из режима приведены на Рис. 13 (темп выдачи 1Гц).

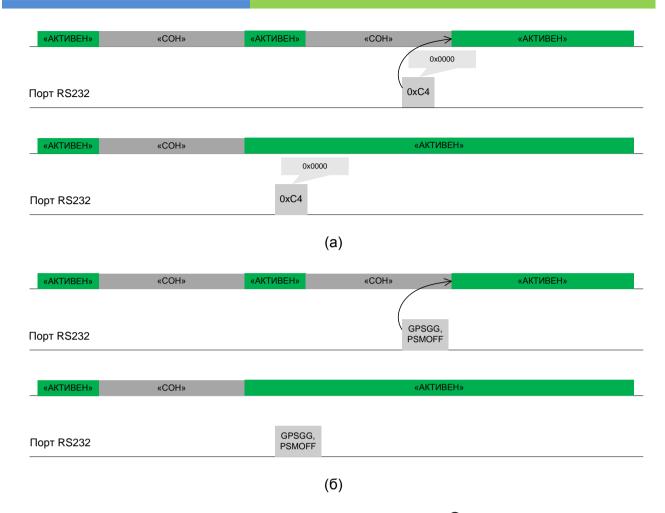


Рис. 13. Временные диаграммы выхода из режима RELAXED FIX®: (а) используя «0хС4»; (б) используя \$GPSGG,PSMOFF

1. В режиме RELAXED FIX® секундная метка времени 1PPS формируется, однако следует иметь в виду, что в состоянии «СОН» ее точность не обеспечивается

Способы управления режимом сведены в Таблицу 15.

Таблица 15. Управление режимом RELAXED FIX®

Настройка режима	Вход в режим	Пробуждение	Выход из режима
«0x47»	 «0xC4»: 0x0001 \$GPSGG,PSM ON*07	По внутреннему таймеру	 «0xC4»: 0x0000 \$GPSGG,PSMOFF*69

3.6.5.4.2 FIX-BY-REQUEST®

Режим используется, когда пользователю нужны результаты навигационных определений по мере необходимости. Основное время модуль находится в состоянии «СОН». В случае необходимости пользователь переводит модуль с состояние «АКТИВЕН», приемник осуществляет обнаружение сигналов, решает НЗ, выдает координаты пользователю и далее самостоятельно переходит в «СОН». Продолжительность состояния «АКТИВЕН» находится в пределах, задаваемых настройками режима.

Для пробуждения приемника может использоваться любой из трех источников:

- Вывод PD. Активным является передний фронт сигнала переход из лог. «0» в лог. «1».
- Соответствующие бинарные/NMEA команды по Порту #0
- Соответствующие бинарные/NMEA команды по Порту #1.

Для входа в режим и выхода из режима используются только бинарные/NMEA команды по любому последовательному порту.

Ниже описано действие команды «0xC4» для режима FIX-BY-REQUEST®, в зависимости от того, когда она приходит:

Состояние «АКТИВЕН»:

0x0000 выход из режима0x0001 вход в режим.

Состояние «СОН»:

0x0000 выход из режима0x0001 пробуждение.

Ниже описано действие NMEA сообщений \$GPSGG,PSM ON*07, \$GPSGG,PSMOFF*69, в зависимости от того, когда они приходят.

Состояние «АКТИВЕН»:

\$GPSGG,PSMOFF*69
 \$GPSGG,PSM ON*07
 выход из режима
 вход в режим.

Состояние «СОН»:

\$GPSGG,PSMOFF*69 выход из режима
 \$GPSGG,PSM ON*07 пробуждение.

Примеры временных диаграмм пробуждения и выхода из режима приведены на Рис. 14.

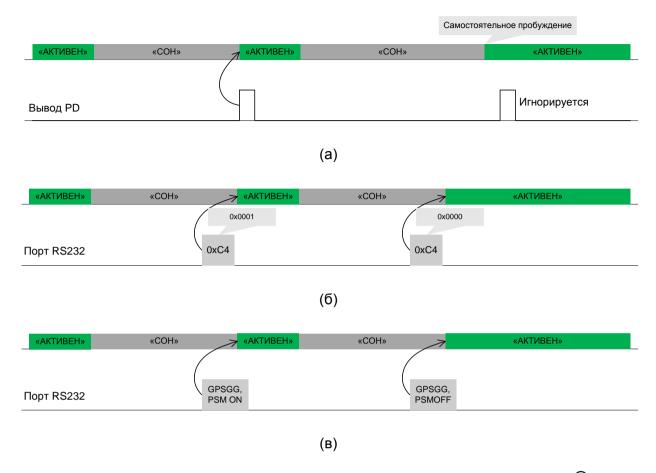


Рис. 14. Временные диаграммы пробуждения и выхода из режима FIX-BY-REQUEST®: (a) пробуждение выводом PD и самостоятельное пробуждение; (б) пробуждение, используя «0xC4»: 0x0001, и пробуждение/выход из режима, используя «0xC4»: 0x0000; (в) пробуждение, используя \$GPSGG,PSMON, и пробуждение/выход из режима, используя \$GPSGG,PSMOFF

В режиме FIX-BY-REQUEST® секундная метка времени 1PPS формируется, однако следует иметь в виду, что в состоянии «COH» ее точность не обеспечивается

Способы управления режимом сведены в Таблицу 16.

Таблица 16. Управление режимом FIX-BY-REQUEST®

Настройка режима	Вход в режим	Пробуждение	Выход из режима
«0x47»	 «0xC4»: 0x0001 \$GPSGG,PSM ON*07	Вывод PD«0xC4»: 0x0001\$GPSGG,PSM ON*07	 «0xC4»: 0x0000 \$GPSGG,PSMOFF*69

3.6.6 Альманахи

В процессе работы приемник выделяет альманахи из принимаемых сигналов и периодически обновляет их во Flash памяти. Кроме того, альманахи могут быть загружены в приемник, используя соответствующие сообщения «0х48» для GPS и «0х49» для ГЛОНАСС, а также получены из приемника, используя запрос «0х88» для GPS и запрос «0х89» для ГЛОНАСС. Текущие принятые приемником альманахи могут быть записаны во Flash память принудительно, используя бинарное сообщение «0хС3» или NMEA сообщение \$GPSGG,SAVEFL*63.

По результатам сохранения альманахов во Flash (автоматического или по команде) приемник выдает сообщение «0xC3» со следующим содержимым:

- Код «0»: сохранение данных не может быть завершено (ошибка записи)
- Код «1»: выполнено сохранение альманахов по команде «0хС3»
- Код «2»: выполнено автоматическое сохранение альманахов.

4. Техническое обслуживание

Модуль не требует технического обслуживания.

5. Текущий ремонт

Модуль не требует текущего ремонта при соблюдении правил эксплуатации, изложенных в настоящем РЭ, при соблюдении требований к условиям эксплуатации, хранения и транспортирования.

При возникновении отказов модуль должен быть возвращен на предприятие-изготовитель для последующего ремонта.

6. Транспортирование и хранение

С целью предотвращения повреждения модулей из-за адсорбции влаги и последующего воздействия высоких температур во время пайки оплавлением и связанного с этим снижения надёжности изделий и выхода годной продукции, модули упаковываются в герметичный, влагонепроницаемый пакет с индикатором влажности и контейнером, содержащим поглотитель влаги (силикагель).

Срок хранения в отапливаемых хранилищах с регулируемыми температурой окружающей среды от +5 до +35°C и относительной влажностью воздуха до 80% при температуре +25°C составляет не более 5 лет.

Упакованные модули могут транспортироваться всеми видами транспорта на расстояния до 20000 км без ограничения скорости при температурах от -40°C до +85°C при их защите от прямого воздействия атмосферных осадков и механических повреждений по правилам, соответствующим требованиям ГОСТ 23088.