

xL865 Global Form Factor Application Note

80000NT11207A Rev. 2- 2018-12-04

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT faulttolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with all terms and conditions imposed on you in respect of such separate software. In addition to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY "OTHER CODE"), AND THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

APPLICABILITY TABLE

PRODUCTS

- GL865-DUAL V3
- GL865-QUAD V3
- GL865-DUAL V3.1
- **GL865-QUAD V3.1**
- GL865-QUAD V4
- UL865-EUR
- UL865-EUD
- UL865-NAR
- UL865-NAD
- CL865-DUAL
- ML865C1

CONTENTS

NOT	CE2
COP	YRIGHTS2
сом	PUTER SOFTWARE COPYRIGHTS2
USA	GE AND DISCLOSURE RESTRICTIONS
I.	License Agreements
II.	Copyrighted Materials
III.	High Risk Materials
IV.	Trademarks
V.	Third Party Rights
APPI	LICABILITY TABLE
CON	TENTS5
1.	INTRODUCTION
2.	OVERVIEW9
3.	MECHANICAL DIMENSIONS
4.	MODULE COMMON PINOUT11
4.1.	PIN-OUT differences UL865,GL865-V3,UL86519
5.	LEGACY VS NEW XL865 FORM FACTOR21
6.	LOGIC LEVEL SPECIFICATION
7.	USB PORT
8.	SPI PORT
9.	SIM CONNECTION
10.	FREQUENCY BANDS
11.	POWER SUPPLY
12.	DOCUMENT HISTORY

1. INTRODUCTION

The information presented in this document is believed to be accurate and reliable. However, no responsibility is assumed by Telit Communications S.p.A. for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Telit Communications S.p.A. other than for circuitry embodied in Telit products. This document is subject to change without notice.

1.1. Scope

Scope of this document is the description of some hardware solutions useful for developing an application compatible with the products of the xL865 family in order to highlight the minor differences between the above mentioned products.

1.2. Contact Information, Support

For general contact, technical support services, technical questions and report documentation errors contact Telit Technical Support at:

- TS-EMEA@telit.com
- TS-AMERICAS@telit.com
- TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

Danger – This information MUST be followed or catastrophic equipment failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.4. Related Documents

The following is a list of applicable documents downloadable from the Download Zone section of Telit's website http://www.telit.com

- UL865 Hardware User Guide 1VV0301050
- GL865 V3/V3.1 Hardware User Guide 1VV0301018
- CL865-DUAL Hardware User Guide 1VV0301104
- GL865-QUAD V4 HW User Guide 1VV0301518 rev.2
- ML865C1 Hardware User Guide 1VV0301493 rev.1 preliminary

2. OVERVIEW

In this document all the basic functions of a mobile phone will be taken into account; for each one of them a proper hardware solution will be suggested and eventually the wrong solutions and common errors to be avoided will be evidenced. Obviously, this document cannot embrace the whole hardware solutions and products that may be designed. The wrong solutions to be avoided shall be considered as mandatory, while the suggested hardware configurations shall not be considered mandatory, instead the information given shall be used as a guide and a starting point for properly developing your product with the described modules. For further hardware details that may not be explained in this document refer to the Telit Product Description documents where all the hardware information is reported.

The integration of the GL865 V3/UL865/CL865/ML865C1 and GL865 V4 cellular module within user application shall be done according to the design rules described in this manual.

The Unified Form Factor (UFF) is a concept of a products family characterized by the same mechanical and electrical form factor with different radio access technology.

This new approach protects customer's investment by giving you the possibility to migrate with the simple plug-and-play switch of your module with other wireless modules in the Unified Form Factor range without changing your application. In this way Telit offers easy access to different cellular technologies, certifications or bandwidth. For example if you develop applications based on today's mobile operator GSM/GPRS cellular technology if required it might be upgraded in the future to higher data speed capability such as UMTS/HSDPA.

The main advantages are summarized below:

- Increase of the efficiency in the use of the investments assigned to the development of the application (NRE), resulting in higher ROI, thus justifying the business choice of the UFF products;
- Products that are designed to bring technology enhancements to the integrators, such as higher data rates and new wireless standards while maintaining backwards compatibility in form factor and logical interfaces;
- Ease of integration;
- Telit as a single supplier of wireless modems;
- The customer can focus on its core business and application, not the management of operations and procurement required for wireless modems;
- One single application for different markets.

3. MECHANICAL DIMENSIONS

MODULE	LENGTH [MM]	WIDTH [MM]	THICKNESS [MM]
GL865 V3	24.4	24.4	2.6
GL865 V3.1	24.4	24.4	2.6
GL865 V4	24.4	24.4	2.6
UL865	24.4	24.4	2.6
CL865	24.4	24.4	2.45
ML865C1	24.4	24.4	2.6

The Telit xE865 family overall dimensions are:

In a common design application, which is going to use multiple models, we recommend to consider the highest dimensions as reference.

Note:

The 3D drawings/models versions are available separately, and they are provided in IGES format. Please contact the Telit Technical Support to get the models.

4. MODULE COMMON PINOUT

The new GL865-QUAD V4 and ML865C1 have 8 additional pads with respect to the other "legacy" products in the xL865 family, as a consequence the pin numbering changed.

Due to the fact that the pin numbering has changed, please refer to the physical pads and not only to the numbering.

"L" refer to = GL865-QUADV3,UL865,CL865 legacy products

"N" refer to =GL865-QUAD V4,ML865C1.

AUX/SPI_MOSI RXD_AUX/SPI_MISO FORCED_USB_B00T GPI0_01/DVI_WA0 GPI0_04/DVI_CLK GPI0_02/DVI_RX GPI0_03/DVI_TX GPIO_02/JDR/DVI_RX LEGACY PADS HW SHUTDOWN* GPIO_01/DVI_WA0 GPIO_04/DVI_CLK VAUX/PWRMON V_AUX/PWRMON GPIO_03/DVI_TX NEW PADS PA VBATT_PA VBATT VBATT TXD_AUX RXD_AUX NC/RFU TX0 RFU RESET* VBATT GND RFU GND 50 49 48 47 46 45 44 43 56 55 54 53 52 51 48 47 46 45 44 43 42 41 40 39 38 37 C109/DCD 1 42 GND C109/DCD GND 36 C125/RING 2 41 GND GND C125/RING 35 С ()()C107/DSR 3 40 ANTENNA C107/DSR 34 ANTENNA C108/DTR 39 GND C108/DTR GND 33 С \bigcirc C105/RTS 5 Ο О С \bigcirc 38 GND C105/RTS GND 32 C106/CTS 6 37 GNSS_ANT C106/CTS NC/RFU 31 36 RFU WAKE 7 New Legacy RFU 💶 35 GND 8 C103/TXD 34 RFU 9 C103/TXD 30 VRTC О \bigcirc С C104/RXD 10 33 TGPI0_05/GNSS_LNA_EN 29 C104/RXD GPIO_05/RFTXMON SIMVCC 11 32 TGPI0_06/SPI_CS SIMVCC 28 GPIO_06/ALARM SIMRST 12 31 TGPI0_07 Ο С SIMRTS 27 GPIO_07/BUZZER С 10 30 TGPI0_08 SIMCLK 13 GPIO_08/STAT_LED SIMCLK 26 11 SIMIO 14 29 SPI_CLK NC/RFU SIMIO 19 20 21 22 23 24²⁵ 13 14 15 16 17 18 25 26 27 NJU 20 00 NJU 20 NJU 17 18 19 20 21 22 15 16 23 24 28 USB_DM USB_DP GND RFU GND RFU GND RFU DAC_OUT RFU RFU USB_VBUS ADC_IN1 ADC_IN1 ADC_IN2 NC/RFU NC/RFU NC/RFU NC/RFU AGND EAR+ EAR-MIC+ MIC

Red rectangular indicates the pin added for the ML865C1 and GL865-V4 FF.

Pin "L"	Pin "N"	Signal	I/O	Function	Туре	Comment		
	Power Supply							
38	44	VBATT	-	Main power supply (Baseband)	Power			
37	43	VBATT_PA	-	Main power supply (Radio PA)	Power			
23	27	AGND	-	Ground	Power			
32	38	GND	-	Ground	Power			
33	39	GND	-	Ground	Power			
35	41	GND	-	Ground	Power			
36	42	GND	-	Ground	Power			
46	54	GND	-	Ground	Power			
	SIM C	CARD Interface						

80000NT11207A Rev. 2

11	SIMVCC	-	External SIM signal – Power supply for the SIM	1.8 / 3V
12	SIMRST	0	External SIM signal – Reset	1.8 / 3V
13	SIMCLK	0	External SIM signal – Clock	1.8 / 3V
14	SIMIO	I/O	External SIM signal - Data I/O	1.8 / 3V
Trace	•			
52	RXD_AUX	I	RX Data for debug monitor	CMOS 1.8V
53	TXD_AUX	0	TX Data for debug monitor	CMOS 1.8V
Prog	/ Data + Hw Flow Con	trol		
1	C109/DCD	0	Output for Data carrier detect signal (DCD) to DTE	CMOS 1.8V
2	C125/RING	0	Output for Ring indicator signal (RI) to DTE	CMOS 1.8V
3	C107/DSR	0	Output for Data set ready signal (DSR) to DTE	CMOS 1.8V
4	C108/DTR	I	Input for Data terminal ready signal (DTR) from DTE	CMOS 1.8V
	12 13 14 Trace 52 53 Prog. 1 2 3	12 SIMRST 13 SIMCLK 14 SIMIO 52 RXD_AUX 53 TXD_AUX Prog. / Data + Hw Flow Con 1 C109/DCD 2 C125/RING 3 C107/DSR	12 SIMRST O 13 SIMCLK O 14 SIMIO I/O 14 SIMIO I/O Trace 52 RXD_AUX I 53 TXD_AUX O Prog. / Data + Hw Flow Control 1 C109/DCD O 2 C125/RING O 3 C107/DSR O	SIMSIM12SIMRSTOExternal SIM signal – Reset13SIMCLKOExternal SIM signal – Clock14SIMIOI/OExternal SIM signal - Data I/OTrace52RXD_AUXIRX Data for debug monitor53TXD_AUXOTX Data for debug monitorProg. / Data + Hw Flow Control1C109/DCDOOutput for Data carrier detect signal (DCD) to DTE2C125/RINGOOutput for Ring indicator signal (RI) to DTE3C107/DSROOutput for Data set ready signal (DSR) to DTE4C109/DTPInput for Data terminal ready signal (DTR)

80000NT11207A Rev. 2

Page **14** of **35**

2018-12-04

5	5	C105/RTS	I	Input for Request to send signal (RTS) from DTE	CMOS 1.8V
6	6	C106/CTS	0	Output for Clear to send signal (CTS) to DTE	CMOS 1.8V
7	9	C103/TXD	I	Serial data input (TXD) from DTE	CMOS 1.8V
8	10	C104/RXD	0	Serial data output to DTE	CMOS 1.8V
		Miscellaneous Functions			
43	51	VAUX/PWR MON	0	Supply Output for external accessories	CMOS1.8V
47	55	RESET*	I	HW unconditional shutdown (Active Low)	Open collector
30	34	VRTC 1)	AO	VRTC Backup capacitor	Power
		Telit GPIOs			
42	48	GPIO_01 / DVI_WA0	I/O	Telit GPIO_01 Configurable GPIO/ Digital Audio Interface (WA0)	CMOS 1.8V
41	47	GPIO_02 / JDR / DVI_RX	I/O	Telit GPIO_02 Configurable GPIO/ / Jammer Detect Report / Digital Audio Interface (RX)	CMOS 1.8V*

40	46	GPIO_03 / DVI_TX	I/O	Telit GPIO_03 Configurable GPIO/ Digital Audio Interface (TX)	CMOS 1.8V
39	45	GPIO_04/ TX Disable / DVI_CLK	I/O	Telit GPIO_04 Configurable GPIO/ TX Disable input / Digital Audio Interface (CLK)	CMOS 1.8V
29	33	GPIO_05 / RFTXMON	I/O	Telit GPIO_05 Configurable GPIO/ Transmitter ON monitor	CMOS 1.8V
28	32	GPIO_06 / ALARM	I/O	Telit GPIO_06 Configurable GPIO/ ALARM	CMOS 1.8V
27	31	GPIO_07 / BUZZER	I/O	Telit GPIO_07 Configurable GPIO/ Buzzer	CMOS 1.8V
26	30	GPIO_08/ STAT_LED	I/O	Telit GPIO_08 Configurable GPIO/ Status Led	CMOS 1.8V
		RF SECTION			
34	40	ANTENNA	I/O	GSM/EDGE/UMTS Antenna (50 ohm)	RF
		RESERVED			
		19, 31, 48			

(*) GL865-QUAD V4 digital pins are not CMOS 1.8V but CMOS 2.8V

80000NT11207A Rev. 2

Warning(*):

GL865-QUAD V4 digital pins are not CMOS 1.8V but CMOS 2.8V.

In order to design a board compatible with the other xL865 products , a level shifter should be considered.

Warning:

RESERVED pins reported above must not be connected.

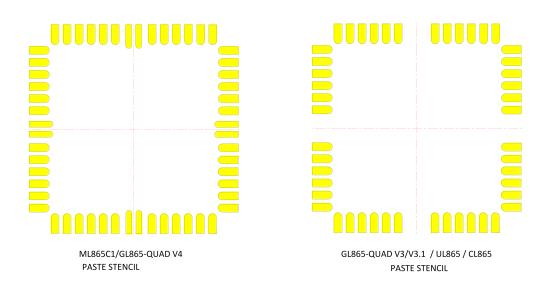
Unlike other Telit's products the RTC feature of CL865 cannot be operated with VRTC only and the external RTC backup capacitor will be also useless. VBATT must be connected to support RTC feature for CL865

The internal GPIO's pull up/pull down could be set to the preferred status for the application using the AT#GPIO command.

Please refer for the AT Commands User Guide for the detailed command Syntax..

4.1. PIN-OUT differences UL865,GL865-V3,UL865

Pin	Module	Signal	I/O	Function
16	UL865	USB_VBUS	AI	Power sense for the internal USB transceiver.
16	GL865 V3	RESERVED	-	-
16	CL865	USB_VBUS	AI	Power for the internal USB transceiver.
17	UL865	USB_D-	I/O	USB differential Data (-)
17	GL865 V3	RESERVED	-	-
17	CL865	USB_D-	I/O	USB differential Data (-)
18	UL865	USB_D+	I/O	USB differential Data (+)
18	GL865 V3	RESERVED	-	-
18	CL865	USB_D+	I/O	USB differential Data (+)
20	UL865	RESERVED	-	-
20	GL865 V3	EAR-	AO	Earphone signal output, phase -
20	CL865	EAR-	AO	Earphone signal output, phase -


21	UL865	RESERVED	-	-
21	GL865	EAR+	AO	Earphone signal output, phase +
21	CL865	EAR+	AO	Earphone signal output, phase +
22	UL865	RESERVED	-	-
22	GL865	Mic-	AI	Mic. signal input; phase-
22	CL865	Mic-	AI	Mic. signal input; phase-
24	UL865	RESERVED	-	-
24	GL865	Mic+	AI	Mic. signal input; phase+
24	CL865	Mic+	AI	Mic. signal input; phase+
25	UL865	SPI_CLK	I/O	SPI_CLK
25	GL865	RESERVED	-	-
25	CL865	RESERVED	-	-

80000NT11207A Rev. 2

5. LEGACY VS NEW XL865 FORM FACTOR

In order to host in the same PCB the legacy GL865-QUAD V3/UL865/CL865 and the new ML865C1/GL865-QUAD V4 the ML865C1 pinout and form factor should be used.

Two different solder paste stencils are required in order to remove the solder paste from the pins 7,8,50,49,36,35,21,22 in the products where they are not present as shown in the following picture.

Warning:

On the WAKE UP pin a zero ohm series resistor should be placed , between the AP and the module. The resistor shall be mounted for the ML865C1 and not populated for the other products.

Warning:

GL865-QUAD V4 digital pins are not CMOS 1.8V but CMOS 2.8V. In order to design a board compatible with the other xL865 products , a level shifter shold be considered.

6. LOGIC LEVEL SPECIFICATION

The following tables show the logic level specifications for GL865 V3, UL865 and CL865:

Absolute Maximum Ratings -Not Functional

		GL865 V3		UL865		CL865
Parameter	Min	Max	Min	Max	Min	Max
Input level on any digital pin (CMOS 1.8) with respect to ground	-0.3V	2.1V	-0.3V	2.3V	-0.3V	2.3V

		-QUAD V4 OS 2.8)	ML865C1 (CMOS 1.8)		
Parameter	Min	Max	Min	Max	
Input level on any digital pin (CMOS 1.8) with respect to ground	-	-	-0.3V	2.1V	
Input level on any digital pin (CMOS 2.8) with respect to ground	-0.3V	+3.1V	-	-	

		GL865 V3 (1.8V CMOS)		UL865 (1.8V CMOS)		CL865 (1.8V CMOS)
Parameter	Min	Max	Min	Max	Min	Max
Input high level	1.3V	1.9V	1.5V	1.9V	1.5V	2.1V
Input low level	0.0V	0.35V	0.0V	0.35V	0.0V	0.35V
Output high level	1.6V	1.9V	1.6V	1.9V	1.35V	1.8V
Output low level	0.0V	0.2V	0.0V	0.2V	0.0V	0.45V

	GL865-QUAD V4 (2.8V CMOS)		ML865C1 (1.8V CMOS)	
Parameter	Min	Max	Min	Max
Input high level	2.1V	3.1V	1.5V	1.9V
Input low level	•		0V	0.35V
Output high level	2.4V	3.1V	1.6V	1.9V
Output low level	0V	0.4V	0V	0.2V

Current characteristics

	GL865 V3	UL865	CL865
Parameter	Typical	Typical	Typical

Output Current	1mA	1mA	2mA
Input Current	1µA	1µA	30µA

	GL865 V4	ML865C1
Parameter	Typical	Typical
Output Current	1mA	1mA
Input Current	1mA	1uA

7. USB PORT

The UL865 and CL865 include an integrated universal serial bus (USB) transceiver, compliant with USB 2.0 specifications and supporting the USB Full-Speed (12Mb/s) mode. The UL865 supports also High-Speed (480Mb/s) mode. For this reason the signal traces should be routed carefully: trace lengths, number of vias and capacitive loading should be minimized and the characteristic impedance value should be as close as possible to 90 Ohms differential.

The impedance value of USB_DPLUS and USB_DMINUS signals for CL865 should be as close as possible to 100 Ohms differential.

Pins 16, 17 and 18 are internally unconnected on GL865 V3 so in a common design the USB port can be routed to the MCU in order to have the possibility to use it in case UL865 and CL865 are mounted.

If not used we suggest routing pins 16, 17 and 18 of xL865 to test points (or better to a mini USB connector not mounted).

Pin	Module	Signal	I/O	Function
16	UL865	USB_VBUS	AI	Power sense for the internal USB transceiver.
16	GL865 V3	RESERVED	-	-
16	CL865	USB_VBUS	AI	Power for the internal USB transceiver.
18	ML865C1	USB_VBUS	AI	Power for the internal USB transceiver.
18	GL865- QUAD V4	USB_VBUS	AI	Power for the internal USB transceiver.
17	UL865	USB_D-	I/O	USB differential Data (-)
17	GL865 V3	RESERVED	-	-
17	CL865	USB_D-	I/O	USB differential Data (-)
19	ML865C1	USB_D-	I/O	USB differential Data (-)

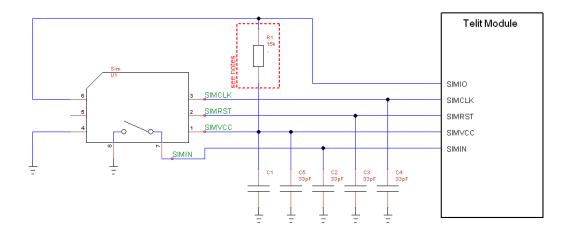
19	GL865- QUAD V4	USB_D-	I/O	USB differential Data (-)
18	UL865	USB_D+	I/O	USB differential Data (+)
18	GL865 V3	RESERVED	-	-
18	CL865	USB_D+	I/O	USB differential Data (+)
20	ML865C1	USB_D+	I/O	USB differential Data (+)
20	GL865- QUAD V4	USB_D+	I/O	USB differential Data (+)
20	UL865	RESERVED	-	-

8. SPI PORT

The UL865 module is provided with one 3 wire slave SPI interface. The AP has the master role i.e. it supplies the clock. The following table is listing the available signals:

PAD	Model	Signal	l/ O	Function	COMMENT
45	UL865	SPI_MOSI/ TX_AUX	l/ O	SPI MOSI	Shared with TX_AUX
45	GL865	TX_AUX	0	Auxiliary UART (TX Data to DTE)	
45	CL865	TX_AUX	0	Auxiliary UART (TX Data to DTE)	
53	ML865C1	TXD_AUX/ SPI_MOSI	0	Auxiliary UART (TX Data to DTE	
44	UL865	SPI_MISO/ RX_AUX	l/ O	SPI MISO	Shared with RX_AUX
44	GL865	RX_AUX	I	Auxiliary UART (RX Data from DTE)	
44	CL865	RX_AUX	I	Auxiliary UART (RX Data from DTE)	
52	ML865C1 GL864-V4	SPI_MISO	I	RX_AUX/SPI_ MISO	
25	UL865	SPI_CLK	I	SPI CLK	
25	GL865	RESERVE D	-	-	-
25	CL865	RESERVE D	-	RESERVED	
29	ML865C1	SPI_CLK	Ι	GPIO_08/GN SS_LNA_EN)	

Warning:


In a common design xL865 the SPI port should not be used.

Due to the shared functions, when the SPI port is used, it is not possible to use the AUX_UART port.

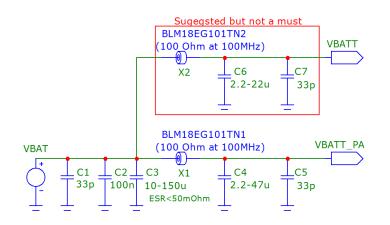
9. SIM CONNECTION

The figure below illustrates in particular how the application side should be designed, and what values the components should have.

The minimum value of C1 can vary depending on the module; in the table below you have the recommended values. The maximum for all modems is 1uF.

Module	C1
GL865-QUAD V3	220nF
UL865	100nF
GL865-QUAD V4	470nF
ML865C1	100nF to 1uF
CL865	100nF

10. FREQUENCY BANDS


Module + Region Variant	LTE FDD	LTE TDD	3G	TD-SCDMA	2G	CDMA
GL865-QUAD V4	-	-	-	-	GSM850, 900 1800,1900	
GL865-QUAD v3					GSM850,900 1800,1900	
ML865C1-NA	B2,B4,B12, B13					
ML865C1-EA	B3, B8, ,B20				GSM850, 900 1800,1900	
UL865-EU			FDD B1,B8		GSM900, 1800	
UL865-NA			FDD B2, B5		GSM850, 1900	

Telit

11. **POWER SUPPLY**

The power supply circuitry and board layout are a very important part in the full product design and they strongly reflect on the product overall performances, hence read carefully the requirements and the guidelines that will follow for a proper design.

To improve EMI filtering an EMI suppression circuitry must be added on modem's VBATT_PA, and if possible also on VBATT. Follow schematic on figure below.

12. DOCUMENT HISTORY

Revision	Date	Changes
0	2013-10-07	Initial release
1	2014-01-08	Added CL865
2	2018-12-04	Updated template Added ML865C1 and GL865 V4

SUPPORT INQUIRIES

Link to www.telit.com and contact our technical support team for any questions related to technical issues.

www.telit.com

Telit Communications S.p.A. Via Stazione di Prosecco, 5/B I-34010 Sgonico (Trieste), Italy

Telit IoT Platforms LLC 5300 Broken Sound Blvd. Suite 150 Boca Raton, FL 33487, USA

Telit Wireless Solutions Inc. 3131 RDU Center Drive, Suite 135 Morrisville, NC 27560, USA

Telit Wireless Solutions Co., Ltd. 8th Fl., Shinyoung Securities Bld. 6, Gukjegeumyung-ro8-gil, Yeongdeungpo-gu Seoul, 150-884, Korea

Telit Wireless Solutions Ltd. 10 Habarzel St. Tel Aviv 69710. Israel

Telit Wireless Solutions Technologia e Servicos Ltda Avenida Paulista, 1776, Room 10.C 01310-921 São Paulo, Brazil

Telit reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. The information contained herein is provided "as is". No warranty of any kind, either express or implied, is made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This document may be revised by Telit at any time. For most recent documents, please visit www.telit.com Copyright © 2016, Telit