

 [0
1
.2

0
1

7
]

Mod. 0809 2017-01 Rev.8

Easy Script in Python 2.7
Application Note

80378ST10106A Rev. 6 – 2017-02-16

80378ST10106A Rev. 6 Page 2 of 93 2017-02-16

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICE

While reasonable efforts have been made to assure the accuracy of this document, Telit
assumes no liability resulting from any inaccuracies or omissions in this document, or from
use of the information obtained herein. The information in this document has been
carefully checked and is believed to be reliable. However, no responsibility is assumed for
inaccuracies or omissions. Telit reserves the right to make changes to any products
described herein and reserves the right to revise this document and to make changes
from time to time in content hereof with no obligation to notify any person of revisions or
changes. Telit does not assume any liability arising out of the application or use of any
product, software, or circuit described herein; neither does it convey license under its
patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that Telit
intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be,
include or describe copyrighted Telit material, such as computer programs stored in
semiconductor memories or other media. Laws in the Italy and other countries preserve
for Telit and its licensors certain exclusive rights for copyrighted material, including the
exclusive right to copy, reproduce in any form, distribute and make derivative works of the
copyrighted material. Accordingly, any copyrighted material of Telit and its licensors
contained herein or in the Telit products described in this instruction manual may not be
copied, reproduced, distributed, merged or modified in any manner without the express
written permission of Telit. Furthermore, the purchase of Telit products shall not be
deemed to grant either directly or by implication, estoppel, or otherwise, any license under
the copyrights, patents or patent applications of Telit, as arises by operation of law in the
sale of a product.

COMPUTER SOFTWARE COPYRIGHTS

The Telit and 3rd Party supplied Software (SW) products described in this instruction
manual may include copyrighted Telit and other 3rd Party supplied computer programs
stored in semiconductor memories or other media. Laws in the Italy and other countries
preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted
computer programs, including the exclusive right to copy or reproduce in any form the
copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party
supplied SW computer programs contained in the Telit products described in this
instruction manual may not be copied (reverse engineered) or reproduced in any manner
without the express written permission of Telit or the 3rd Party SW supplier. Furthermore,
the purchase of Telit products shall not be deemed to grant either directly or by
implication, estoppel, or otherwise, any license under the copyrights, patents or patent
applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive,
royalty free license to use that arises by operation of law in the sale of a product.

80378ST10106A Rev. 6 Page 3 of 93 2017-02-16

USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is
furnished by express license agreement only and may be used only in accordance with
the terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is
prohibited by law. No part of the software or documentation may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, without prior written permission of Telit

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT
fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control
equipment in the following hazardous environments requiring fail-safe controls: the
operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air
Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its
supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High
Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or
service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply
with all terms and conditions imposed on you in respect of such separate software. In
addition to Third Party Terms, the disclaimer of warranty and limitation of liability
provisions in this License shall apply to the Third Party Right software.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED
FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD
PARTY MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS
FROM WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND
THE USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE
SOFTWARE, INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF
SATISFACTORY QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS),
HOWEVER CAUSED AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER
LEGAL THEORY, ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF
THE OTHER CODE OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER
OR BOTH THIS LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE
FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

80378ST10106A Rev. 6 Page 4 of 93 2017-02-16

APPLICABILITY TABLE

PRODUCTS

SW Versions

HE910 Family

HE9101

12.00.xx6

HE910-D

HE910-GA

HE910-EUR / HE910-EUD

 HE910-EUG / HE910-NAG

 HE910-NAR / HE910-NAD

UE910 Family

 UE910-EUR / UE910-EUD
12.00.xx6

 UE910-NAR / UE910-NAD

UL865 Family

 UL865-EUR / UL865-EUD

12.00.xx6

 UL865-NAR / UL865-NAD

 UL865-N3G

GE910 Family

GE910-QUAD
13.00.xx7

 GE910-GNSS

CE910 Family

 CE910-DUAL

18.12.001

(Sprint)

18.12.022

(Verizon)

18.12.012

(Aeris)

Note: the present document covers the SW versions shown in the Applicability Table and
may mention features which are not present or behave differently in previous SW versions

1 HE910 is the “type name” of the products marketed as HE910-G & HE910-DG

80378ST10106A Rev. 6 Page 5 of 93 2017-02-16

CONTENTS

NOTICE ... 2

COPYRIGHTS .. 2

COMPUTER SOFTWARE COPYRIGHTS .. 2

USAGE AND DISCLOSURE RESTRICTIONS ... 3

I. License Agreements ... 3

II. Copyrighted Materials ... 3

III. High Risk Materials ... 3

IV. Trademarks .. 3

V. Third Party Rights ... 3

APPLICABILITY TABLE .. 4

CONTENTS .. 5

1. INTRODUCTION .. 11

2. EASY SCRIPT EXTENSION – PYTHON INTERPRETER 14

2.1 Overview... 14

2.2. Python 2.7.2 Copyright Notice .. 15

2.3 Python .. 15

2.4. Python implementation description ... 16

2.5. Python supported features .. 18

3. PYTHON SCRIPT OPERATIONS .. 19

3.1. Executing the Python script .. 19

3.1.1 Write the Python script .. 19

3.1.2. Compile the Python script ... 19

3.1.3. Download the Python script .. 20

3.1.4. Enable the python script ... 22

3.1.5. Run the Python script.. 22

3.1.6. Read the Python script .. 23

3.1.7. List saved Python script .. 23

3.1.8. Delete the Python script .. 24

3.2. Debug Python script ... 24

4. PYTHON BUILD-IN CUSTOM MODULES 25

4.1. MDM built-in module ... 26

80378ST10106A Rev. 6 Page 6 of 93 2017-02-16

4.1.1. MDM.send(string, timeout) .. 27

4.1.2. MDM.read() .. 27

4.1.3. MDM.sendbyte(byte, timeout) ... 28

4.1.4. MDM.readbyte() .. 28

4.1.5. MDM.sendavail() ... 29

4.1.6. MDM.getDCD() ... 29

4.1.7. MDM.getCTS().. 29

4.1.8. MDM.getDSR() ... 29

4.1.9. MDM.getRI() ... 30

4.1.10. MDM.setRTS(RTS_value) .. 30

4.1.11. MDM.setDTR(DTR_value) .. 30

4.2. MDM2 built-in module ... 30

4.2.1. MDM2.setDTR(string, timeout) ... 31

4.2.2. MDM2.read() .. 31

4.2.3. MDM2.sendbyte(byte, timeout) ... 32

4.2.4. MDM2.readbyte() .. 32

4.2.5. MDM2.sendavail() ... 33

4.2.6. MDM2.getDCD() ... 33

4.2.7. MDM2.getCTS() .. 33

4.2.8. MDM2.getDSR() ... 33

4.2.9. MDM2.getRI() ... 34

4.2.10. MDM2.setRTS(RTS_value) .. 34

4.2.11. MDM2.setDTR(DTR_value) .. 34

4.3. SER built-in module .. 34

4.3.1. SER.send(string, <timeout>) ... 35

4.3.2. SER.read() .. 35

4.3.3. SER.sendbyte(byte, <timeout>) .. 36

4.3.4. SER.readbyte() ... 36

4.3.5. SER.readavail() .. 37

4.3.6. SER.set_speed(speed, <char format>,<flow control>) 37

4.3.7. SER.setDCD(DCD_value) .. 38

4.3.8. SER.setCTS(CTS_value) ... 38

4.3.9. SER.setDSR(DSR_value) ... 38

4.3.10. SER.setRI(RI_value) .. 39

4.3.11. SER.getRTS() ... 39

4.3.12. SER.getDTR() .. 39

4.4. SER2 built-in module .. 39

80378ST10106A Rev. 6 Page 7 of 93 2017-02-16

4.4.1. SER2.send(string) .. 40

4.4.2. SER2.read() .. 40

4.4.3. SER2.sendbyte(byte) .. 41

4.4.4. SER2.readbyte() ... 41

4.4.5. SER2.sendavail() .. 41

4.4.6. SER2.set_speed(speed, <char format>) 42

4.5. GPIO built-in module .. 42

4.5.1. GPIO.setIOvalue(GPIOnumber, value) 43

4.5.2. GPIO.getIOvalue(GPIOnumber) ... 43

4.5.3. GPIO.setIOdie(GPIOnumber, value, direction) 43

4.5.4. GPIO.getIOdir(GPIOnumber) .. 44

4.5.5. GPIO.getADC(adcNumber) .. 44

4.5.6. GPIO.setDAC(enable, value) .. 45

4.5.7. GPIO.setVAUX(vauxNumber, enable) .. 45

4.5.8. GPIO.getAXE() ... 46

4.5.9. GPIO.setSLED(status, onDuration, offDuration) 46

4.5.10. GPIO.getCBC() ... 47

4.6. GPS built-in module .. 47

4.6.1. GPS.powerOnOff(newStatus) ... 48

4.6.2. GPS.getPowerOnOff() .. 48

4.6.3. GPS.resetMode(mode) ... 48

4.6.4. GPS.getActualPosition() ... 48

4.6.5. GPS.powerSavingMode(mode, pushToFixPeriod) 49

4.6.6. GPS.powerSavingWakeUp() ... 49

4.6.7. GPS.getLastGGA() ... 49

4.6.8. GPS.getLastGLL() .. 50

4.6.9. GPS.getLastGSA() ... 50

4.6.10. GPS.getLastGSV() ... 50

4.6.11. GPS.getLastRMC() ... 51

4.6.12. GPS.getLastVTG() .. 51

4.6.13. GPS.getPosition() ... 51

4.7. IIC built-in module ... 52

4.7.1. IIC.new(SDA_pin, SCL_pin, ADDR) .. 52

4.7.2. init() .. 53

4.7.3. readwrite(string, <read_len>) .. 53

4.8. SPI built-in module .. 54

4.8.1. SPI.new(SCLK_pin, MOSI_pin, MISO_pin, <SS0>,
 <SS1>,…,<SS7>).. 55

80378ST10106A Rev. 6 Page 8 of 93 2017-02-16

4.8.2. init(CPOL, CPHA, <SSPOL>,<SS>) ... 55

4.8.3. readwrite(string, <read_len>,<SS>) .. 56

4.9. MOD built-in module ... 57

4.9.1. MOD.watchdogEnable(timeout) .. 57

4.9.2. MOD.watchdogReset() ... 57

4.9.3. MOD.watchdogDisable() ... 58

4.9.4. MOD.powerSaving(timeout) .. 58

4.10. USB0 built-in module .. 58

4.10.1. USB0.send(string, <timeout>) ... 59

4.10.2. USB0.read() .. 59

4.10.3. USB0.sendbyte(byte, <timeout>) .. 60

4.10.4. USB0.readbyte() ... 60

4.10.5. USB0.sendavail() .. 60

5. PYTHON STANDARD FUNCTIONS .. 61

5.1. Technical characteristics ... 61

5.1.1. General ... 61

5.2. Python supported features .. 62

5.2.1. Operators, statements, functions .. 62

5.2.2. Built-in Functions .. 63

5.2.3. Built-in Constants .. 64

5.2.4. Truth Value Testing .. 65

5.2.5. Boolean Operations .. 65

5.2.6. Comparisons .. 65

5.2.7. Numeric Types: Integer, Long Integer and Floating Point 65

5.2.8. Numeric Types: Integer, Long Integer ... 66

5.2.9. Numeric Types: Floating Point .. 66

5.2.10. Numeric Types: Complex .. 66

5.2.11. Iterator Types ... 66

5.2.12. Generator Types ... 66

5.2.13. Sequence Types: String, List, Tuple, Bytearray,
 Buffer and Xrange .. 67

5.2.14. Sequence types: Unicode ... 67

5.2.15. Sequence types: String ... 67

5.2.16. Mutable Sequence Types: List and Bytearray 68

5.2.17. Set Types: Set and Frozenset ... 69

5.2.18. Mapping Types: Dictionary ... 69

5.2.19. File Objects ... 70

80378ST10106A Rev. 6 Page 9 of 93 2017-02-16

5.2.20. Memoryview Objects .. 72

5.2.21. Module Object .. 72

5.2.22. Classes and class Instances ... 72

5.2.23. Function Objects ... 73

5.2.24. Method Objects... 73

5.2.25. Code Objects .. 73

5.2.26. Type Objects .. 73

5.2.27. Null Object .. 73

5.2.28. Ellipsis Object ... 73

5.2.29. NotImplemented Object .. 73

5.2.30. Internal Types: Frame Objects .. 73

5.2.31. Internal Types: Traceback Objects.. 73

5.2.32. Slice Objects ... 73

5.2.33. Built-in Exceptions .. 74

5.2.34. Built-in Modules: marshal .. 75

5.2.35. Built-in Modules: imp .. 75

5.2.36. Built-in Modules: _ast.. 75

5.2.37. Built-in Modules: _main_ ... 75

5.2.38. Built-in Modules: _builtin_ ... 76

5.2.39. Built-in Modules: sys ... 76

5.2.40. Built-in Modules: exceptions ... 77

5.2.41. Built-in Modules: gc .. 77

5.2.42. Built-in Modules: _warnings .. 78

5.2.43. Built-in Modules: _md5 ... 78

5.2.44. Built-in Modules: binascii .. 78

5.2.45. Built-in Modules: _sre ... 79

5.2.46. Built-in Modules: _weakref .. 79

5.2.47. Built-in Modules: _symtable .. 79

5.2.48. Built-in Modules: _functools .. 79

5.2.49. Built-in Modules: _socket .. 79

5.2.50. Built-in Modules: time.. 82

5.2.51. Built-in Modules: posix .. 82

5.2.52. Built-in Modules: thread .. 83

5.2.53. Built-in Modules: signal ... 84

5.2.54. Built-in Modules: errno .. 84

5.2.55. Built-in Modules: cStringIO ... 84

5.2.56. Built-in Modules: math .. 85

80378ST10106A Rev. 6 Page 10 of 93 2017-02-16

5.2.57. Library Modules .. 86

6. PYTHON NON STANDARD FUNCTIONS 87

6.1. _socket non standard functions .. 87

6.1.1. Non standard socket option flag: SO_CONTEXTID 87

6.2. signal non standard functions ... 88

6.2.1. Non standard signal: SIGMDM ... 88

6.2.2. Non standard signal: SIGMDM2 ... 88

7. PYTHON NOTES ... 89

7.1. Memory Limits .. 89

7.2. Other Limits .. 89

8. PYTHON SCRIPT EMULATION ON PC..................................... 90

8.1. Executing the Python script on PC .. 90

8.1.1. Install Python .. 90

8.1.2. Install optional serial package ... 90

8.1.3. Copy Python modules ... 90

8.1.4. Run the Python script.. 91

DOCUMENT HISTORY .. 92

80378ST10106A Rev. 6 Page 11 of 93 2017-02-16

1. INTRODUCTION

1.1. Scope

Aim of this document is to give an overview of the Easy Script Extension feature, which
lets the developer to drive the modem internally, writing the controlling application directly
in a high level language such as Python.

1.2. Audience

This document is intended for Telit customers developing functionalities on their
applications.

1.3. Contact Info and Support

For general contact, technical support services, technical questions and report
documentation errors contact Telit Technical Support at:

 TS-EMEA@telit.com

 TS-AMERICAS@telit.com

 TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for

recommendations on accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments

and suggestions for improvements.

Telit appreciates feedback from the users of our information.

mailto:TS-EMEA@telit.com
mailto:TS-AMERICAS@telit.com
mailto:TS-APAC@telit.com
http://www.telit.com/support
http://www.telit.com/

80378ST10106A Rev. 6 Page 12 of 93 2017-02-16

1.4. Text Conventions

Danger – This information MUST be followed or catastrophic equipment failure

or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the

module, if these points are not followed, the module and end user equipment

may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when

integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

80378ST10106A Rev. 6 Page 13 of 93 2017-02-16

1.5 Document Organization

This document contains the following chapters:

Chapter 1: “Introduction” provides a scope for this document, target audience, contact and
support information, and text conventions.

Chapter 2: “Easy Script Extension – Python interpreter” gives a broad overview about the
extension.

Chapter 3: “Python script operations” deals with the execution of the scripts operatively.

Chapter 4: “Python built-in custom modules“ explains in detail the single custom built-in
modules.

Chapter 5: “Python standard functions” provides a description of Python language
supported features.

Chapter 6: “Python non standard functions” provides a description of non standard
functions added to Python language.

Chapter 7: “Python notes” deals with some Python limits that should be considered while
developing scripts.

1.6. Related Documents

 HE910 AT Commands Reference Guide, 80378ST10091A (12.xx.xxx)

 HE Family Ports Arrangements User Guide, 1vv0300971 (12.xx.xxx)

 AT Commands Reference Guide, 80000ST10025A (13.xx.xxx)

 Telit Modules Software User Guide, 1vv0300784 (12.xx.xxx, 13.xx.xxx)

 CE910 Family AT Commands Reference Guide, 80399ST10110A (18.xx.xxx)

 CE910 Family Software User Guide, 1vv0301011 (18.xx.xxx)

80378ST10106A Rev. 6 Page 14 of 93 2017-02-16

2. EASY SCRIPT EXTENSION – PYTHON INTERPRETER

2.1 Overview

The Easy Script Extension is a feature that allows driving the modem internally, writing the
controlling application directly in the Python high level language. A typical application
usually consists of a microcontroller managing data transfer and several I/O pins on the
module through the AT command interface.

A schematic of such a configuration can be the following:

Figure 2-1: Scheme Easy Script in Python

The Easy Script Extension functionality lets the developer to get rid of the external
controller and further simplify the programmed sequence of operations. The equipped
Python version features the following:

 Python script interpreter engine version 2.7.2

 2 MB of Non Volatile Memory space for user scripts and data files (12.xx.xxx,
13.xx.xxx and 18.11.004)

 2 MB RAM available for the Python engine(12.xx.xxx, 13.xx.xxx and 18.11.004)

80378ST10106A Rev. 6 Page 15 of 93 2017-02-16

The following depicts a schematic of this approach:

Figure 2-2: Python Interpreter

2.2. Python 2.7.2 Copyright Notice

Copyright (c) 2001-2011 Python Software Foundation.
All Rights Reserved.
Copyright (c) 2000 BeOpen.com.
All Rights Reserved.
Copyright (c) 1995-2001 Corporation for National Research Initiatives.
All Rights Reserved.
Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.
All Rights Reserved.

Please refer to http://www.python.org/doc/copyright/

2.3 Python

Python is a dynamic object-oriented multipurpose high level programming language.
Python interpreter implemented version is 2.7.2.

Refer to

http://www.python.org/
and
http://www.python.org/download/releases/2.7.2/
for any information about Python and Python interpreter version 2.7.2.

http://www.python.org/doc/copyright/
http://www.python.org/
http://www.python.org/download/releases/2.7.2/

80378ST10106A Rev. 6 Page 16 of 93 2017-02-16

2.4. Python implementation description

Python scripts are text files stored in the Telit module NVM (Non Volatile Memory).
There's a file system inside the module that allows to write and read text and binary files
with different names on one single level (no subdirectories are supported).

The Python script is executed in a task with the lowest priority on the Telit module, so its
execution won’t interfere with GSM/GPRS/WCDMA/CDMA-1xRTT normal operations.
Furthermore, this allows serial ports, protocol stack etc. to run independently from the
Python script.

The Python script interacts with the Telit module functionalities through several built-in
interfaces, as depicted below:

Figure 2-3: Telit module

NOTE:

Antenna GPS, GPS receiver and GPS Library are available exclusively for the

GPS modules.

80378ST10106A Rev. 6 Page 17 of 93 2017-02-16

 The MDM interface is the most important one. It allows the Python script to send
AT commands, receive responses and unsolicited indications, send data to the
network and receive data from the network during connections. It is quite similar to
the regular serial port interface on the Telit module. The only difference being that
this interface is an internal software bridge between Python and module internal
AT command handling engine, and not a physical serial port. All AT commands
working on the Telit module are working with this software interface as well.
Some of them have no meaning for this interface, such as those regarding serial
port settings, while others, such as the concept of hardware flow control, keeps its
meaning but it's managed internally.

 The MDM2 interface is the second interface between Python and the module
internal AT command handling. Its purpose is to send AT commands from the
Python script to the module and receive AT responses from the module to the
Python script when the regular MDM built-in module is already in use.

 The SER interface lets the Python script to read from and write to the physical
serial port USIF0, usually the default port to send AT commands to the module
(e.g.: to read information from an external device). When Python is running, this
serial port is free to be used by the Python script since it is not used as the AT
command interface; the AT parser, in fact, is mapped into the internal virtual serial
port. In default configuration no flow control is available from Python on this port.
From version 12.00.xx4, version 13.00.xx5 and version 18.11.004 it is possible to
enable flow control from Python on this port.

 The SER2 interface lets the Python script to read from and write to the physical
serial port USIF1, usually the default port for trace and debug (only available from
version 12.00.xx4, version 13.00.xx5 and version 18.11.004).

 The GPIO interface lets the Python script to handle general purpose input output
faster than through AT commands, skipping the command parser and controlling
directly the pins.

 The GPS interface is the interface between Python and the module’s internal
GPS controller. Its purpose is to handle the GPS controller without the use of
dedicated AT commands through the MDM built-in module (not available for
version 18.11.004).

 The IIC interface is an implementation on the Python core of the IIC bus Master
based on GPIO pins (only available from version 12.00.xx4, version 13.00.xx5 and
version 18.11.004).

 The SPI interface is an implementation on the Python core of the SPI bus Master
based on GPIO pins (only available from version 12.00.xx4 and version
13.00.xx5).

 The MOD interface is a collection of useful functions (only available from version
12.00.xx4 and version 13.00.xx5).

 The USB0 interface lets the Python script to read from and write to the first mini
USB port USB0 (only available from version 12.00.xx5 and version 13.00.xx6).

 The Python print statement, for debugging purposes, is directly forwarded to
second serial port USIF1.

80378ST10106A Rev. 6 Page 18 of 93 2017-02-16

2.5. Python supported features

Python implemented version is a smaller part than the original: core Python interpreter is
mostly supported but only a few Python modules are supported.

The core Python interpreter version is 2.7.2. All Python statements and almost all Python
built-in types and functions are available for development. Refer to chapter PYTHON
STANDARD FUNCTIONS for more details.

80378ST10106A Rev. 6 Page 19 of 93 2017-02-16

3. PYTHON SCRIPT OPERATIONS

3.1. Executing the Python script

The steps required to have a script executing by the Python engine on the Telit module
are:

 write the Python script, in case splitting it in more than one file;

 optionally compile the Python script;

 download the, optionally compiled, Python script into the module NVM;

 enable the Python script;

 run the Python script.

3.1.1 Write the Python script

A Python script is a simple text file with .py extension, it can be written with any text editor.

In case of large application it is useful to split it in more than one file.

The following is the "Hello Word" short Python script example that sends the simplest AT
command to the AT command parser, immediately reads response and then ends.

import MDM

print 'Hello World!'

result = MDM.send('AT\r', 0)

print result

c = MDM.read()

print c

3.1.2. Compile the Python script

It is an optional operation.

Compiling the Python script on PC before downloading to module saves time at Python
script execution start.

The following procedure allows to compile .py Python files into .pyc Python compiled files:

 install Python version 2.7.2 on your PC (as an example in directory C:\Python27)

 use compileall.py library Python script on your PC to compile all .py files in your
working directory (as an example in directory C:\pytemp)

cd C:\Python27

python -v -S .\Lib\compileall.py -l -f C:\pytemp

80378ST10106A Rev. 6 Page 20 of 93 2017-02-16

3.1.3. Download the Python script

Use the following AT command:

AT#WSCRIPT=“<script_name>“,<size>[,<know-how>]

Where

<script_name>: file name

<size>: file size (number of bytes)

<know-how>: (optional) know how protection, 1 = on, 0 = off

(default)

The script, the compiled script, any text or binary file, can be downloaded to the module
using the AT#WSCRIPT command. In order to guarantee your company know-how, you
have the option to hide the script text so that the AT#RSCRIPT command does not return
the text of the script and keeps it "confidential", you can see the name of the script only
using the AT#LSCRIPT command.

In order to download the, optionally compiled, Python script you have to choose a name
for your script on the module, taking care of the following:

 the extension for scripts is .py;

 the extension for compiled scripts is .pyc;

 any or no extension is permitted for generic text or binary file;

 the maximum file name length allowed is 16 characters;

 file names are case sensitive.

Then you have to find out the exact size in bytes of the script or compiled script, or
generic text or binary file. For example, right clicking on the file and selecting “size” in
“properties” (attention: this is different from selecting “size on disk”).

It is important for large files, compared to module serial port buffer size of 4096 bytes, to
activate hardware flow control on your terminal emulator.

It is possible to overwrite an existing file, there is no need to delete old one first.

When using standard Windows terminal emulator Hyper Terminal refer to “Send Text file”
function.
In Hyper Terminal application select “Hardware” flow control in serial settings.
In ASCII Setup set “Send line ends with line feeds” and “Append line feeds to incoming
line ends”.

Type for example

AT#WSCRIPT=”a.py”,110

wait for the prompt

>>>

and use “Send Text file” selecting the proper file.

Wait for the result: OK or ERROR.

80378ST10106A Rev. 6 Page 21 of 93 2017-02-16

Figure 3-1: step 1

Figure 3-2 : step 2

Figure 3-3: step 3

80378ST10106A Rev. 6 Page 22 of 93 2017-02-16

3.1.4. Enable the python script

Use the following AT command:

AT#ESCRIPT=“<script_name>“

Where

<script_name>: script name to be executed

Using the AT#ESCRIPT command select the Python script which will be executed from
the next start-up and in every future start-up or after AT#EXECSCR command. It can be
either a .py Python script or a .pyc compiled Python script. In case the application consists
of more than one file only the main script must be enabled for execution.

When selecting the script to enable between the ones downloaded to the module:

AT#LSCRIPT - can help checking the names of the scripts;

AT#ESCRIPT? - can help checking the name of the script that is enabled at the moment.

NOTE:

There is no error return value for non existing script name in the module

memory typed in command AT#ESCRIPT. For this reason it’s recommended

to double check the name of the script that you want to execute. On the other

hand this characteristic permits additional possibilities like enabling the Python

script before downloading it on the module or not having to enable the same

script name every time the script has been changed, deleted and replaced

with another script but with the same name.

Type for example

AT#ESCRIPT=”a.py”

Wait for the result: OK or ERROR.

3.1.5. Run the Python script

In default configuration the Python script downloaded to module and enabled is executed
at every module power on if the DTR line is sensed LOW (2.8V at the module DTR pin -
RS232 signals are inverted) on USIF0 at start-up (this means that no AT command
interface is connected to the modem serial port), and if the script name enabled matches
with one of the script names of the scripts downloaded.

For example the Python script correctly downloaded and enabled is executed when the
module is powered on and the serial cable was previously disconnected from USIF0.

In order to block Python script execution and control the module through the AT command
interface on the serial port (for example to update locally a new script) the module shall be
powered on with the DTR line HIGH (0V at the module DTR pin). In this condition the
Python engine is not started and the script is not executed.

The real execution of the .py Python script is delayed from the power on due to the time
needed by Python to parse the script. The larger is the script, the longer is this delay.The
execution of .pyc compiled Python script is faster because there is no parsing of the script,
just reading the file from NVM.

80378ST10106A Rev. 6 Page 23 of 93 2017-02-16

Another possibility is to run the correctly downloaded and enabled Python script from
terminal emulator using the following AT command:

AT#EXECSCR

Another possibility is to select a second way of executing the Python script at every
module power on using the following AT command:

AT#STARTMODESCR=<script_start_mode>[,<script_start_to>]

where

<script_start_mode>: mode (default 0)

<script_start_to>: timeout (default 10)

If the mode is set to 1 than the Python script downloaded to module and enabled is
executed at every module power on if the user does not send any AT command on the
serial port for the time interval specified in <script_start_to> parameter (default 10s).

3.1.6. Read the Python script

Use the following AT command:

AT#RSCRIPT=“<script_name>“

where

<script_name>: file name

Using the command AT#RSCRIPT read a saved script, compiled script, generic text or
binary file. If know-how protection is activated than AT#RSCRIPT will return only OK: no
Python script source code will be returned. In this way no one will be able to read your
Python script from the module serial port.

It is important for large files, compared to PC serial port buffer size, to activate hardware
flow control on your terminal emulator.

Type for example

AT#RSCRIPT=”a.py

Wait for the prompt

<<<

Receive file data and wait for the result: OK or ERROR.

3.1.7. List saved Python script

Use the following AT command:

AT#LSCRIPT

This command shows the list of the file names currently saved, their size and the number
of free bytes in memory.

80378ST10106A Rev. 6 Page 24 of 93 2017-02-16

3.1.8. Delete the Python script

Use the following AT command:

AT#DSCRIPT=“<script_name>“

where

<script_name>: file name

Using the AT#DSCRIPT command delete from the module memory a saved script,
compiled script, generic text or binary file.

Type for example

AT#DSCRIPT=”a.py”

Wait for the result: OK or ERROR.

3.2. Debug Python script

The debug of the running Python script can be done on the second serial port USIF1 of
the module.

For product versions 12.xx.xxx the following configuration must be set.
Use the following AT command:

AT#PORTCFG=3

to configure ports properly.
Reboot module to make #PORTCFG configuration working.
In #PORTCFG: 3 configuration Python standard output and standard error, including print
statements, are redirected to USIF1 at 115200.
In this configuration AT2 parser instance on USIF1 is not available.
In this configuration Python scripts can be debugged with or without USB inserted.

For product versions 13.xx.xxx there is no need of configuration.
Default #PORTCFG: 0 is the proper configuration.
In #PORTCFG: 0 configuration Python standard output and standard error, including print
statements, are redirected to USIF1 at 115200.

For product version 18.11.004 there is no need of configuration.
AT #PORTCFG is not available in version 18.11.004.
In default configuration Python standard output and standard error, including print
statements, are redirected to USIF1 at 115200.

For every product version (12.xx.xxx, 13.xx.xxx and 18.11.004) proceed in the following
way.Connect to the second module serial port USIF1 at 115200.
Collect Python standard output and standard error:

 Python information messages (for example the version);

 Python error information;

 Results of all Python “print” statements.

80378ST10106A Rev. 6 Page 25 of 93 2017-02-16

4. PYTHON BUILD-IN CUSTOM MODULES

Several built-in custom modules have been included in the Python core, specifically
developed keeping in mind the hardware environment of the module.

The built-in modules included are:

MDM
interface between Python and the module AT command handling

MDM2
second interface between Python and the module AT command
handling

SER
interface between Python and the module serial port USIF0 direct
handling

SER2
interface between Python and the module serial port USIF1 direct
handling

GPIO
interface between Python and the module internal general purpose
input output direct handling

GPS
interface between Python and the module internal GPS controller

IIC
interface between Python and the IIC bus Master

SPI
interface between Python and the SPI bus Master

MOD
collection of useful functions

USB0
interface between Python and the module USB port USB0 direct
handling

80378ST10106A Rev. 6 Page 26 of 93 2017-02-16

UE910/HE910 GE910 CE910

MDM
Y Y Y

MDM2
Y Y Y

SER
Y Y Y

SER2
Y Y Y

GPIO
Y Y Y

GPS
Y Y Y

IIC
Y Y Y

SPI
Y Y Y

MOD
Y Y Y

USB0
Y Y Y

4.1. MDM built-in module

The MDM built-in module is the interface between Python and the module AT commands
parser engine.
You need to use the MDM built-in module if you want to send AT commands and data
from the Python script to the network and receive responses and data from the network
during connections.

In the default configuration, echo (ATE0) is disabled and the response format of result
codes is set to verbose (ATV1).

If you want to use MDM built-in module you need to import it:

import MDM

80378ST10106A Rev. 6 Page 27 of 93 2017-02-16

then you can use its methods as in the following example:

a = MDM.send('AT', 0)

b = MDM.sendbyte(0x0d, 0)

c = MDM.read()

which sends 'AT' and reads 'OK' response. More details about MDM built-in module
methods can be found in the following paragraphs.

4.1.1. MDM.send(string, timeout)

This command sends a string to the AT command interface.

The first input parameter string is a Python string to send to the AT command interface.

The second input parameter timeout is a Python integer, measured in 1/10s, and is
important in online mode when flow control is activated. In fact it represents the maximum
time to wait for the string to be sent to the AT command interface when buffer is full and
flow control blocks further data. The timeout range is (0 ÷ 32767).

This method returns immediately after the string has been sent to the AT interface or after
the timeout period if the whole string could not be sent to the AT interface. The return
value is a Python integer which is -1 if the timeout period has expired, 1 otherwise.

Example:

a = MDM.send('AT', 5)

sends the string 'AT' to AT command handling, waiting up to 0.5 s, assigning the return
value to a.

NOTE:

The buffer available for the MDM.send command is 32768 bytes for product

versiones 12.xx.xxx or 4096 bytes for product versiones 13.xx.xxx and

18.11.004.

4.1.2. MDM.read()

This command receives a string from the AT command interface.
It has no input parameter.
The return value is a Python string which contains the data received and stored in buffer
at the moment of command execution. The value might be empty if no data is received.

Example:

a = MDM.read()

Receives a string from AT command handling, assigning the return value to a.

80378ST10106A Rev. 6 Page 28 of 93 2017-02-16

NOTE:

 The buffer available for MDM.read command is 32768 bytes for product

versions12.xx.xxx or 4096 bytes for product versions 13.xx.xxx and

18.11.004. The maximum number of bytes returned by each MDM.read is

1023.

NOTE:

 it is up Python script to keep empty MDM.read buffer

4.1.3. MDM.sendbyte(byte, timeout)

This command sends one byte to the AT command interface.

The first input parameter byte can be zero or any Python byte to send to the AT command
interface.
The second input parameter timeout is a Python integer, measured in 1/10s, and is
important in online mode when flow control is activated. In fact it represents the maximum
time to wait for the byte to be sent to the AT command interface when buffer is full and
flow control blocks further data. The timeout range is (0 ÷ 32767).
This method returns immediately after the byte has been sent to the AT interface or after
the timeout period if the byte could not be sent to the AT interface. The return value is a
Python integer which is -1 if the timeout expired, 1 otherwise.

Example:

b = MDM.sendbyte(0x0d, 0)

Sends the byte 0x0d (carriage return <CR>) to the AT commands handling, without
waiting and assigning the return value to b.

4.1.4. MDM.readbyte()

This command receives a byte from the AT command interface.
It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer
at the moment of command execution or is -1 if no data is received. The return value can
also be zero.

Example:

b = MDM.readbyte()

receives a byte from AT command handling, assigning the return value to b.

80378ST10106A Rev. 6 Page 29 of 93 2017-02-16

4.1.5. MDM.sendavail()

This command queries the number of bytes available to send to MDM buffer.
It has no input parameter.
The return value is a Python integer which is the number of bytes available to send to
MDM buffer.

Example:

n = MDM.sendavail()

queries the number of bytes available to send, assigning the return value to n.

4.1.6. MDM.getDCD()

This command gets Carrier Detect (DCD) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is either 0 if DCD is OFF or 1 if DCD is ON.

Example:

cd = MDM.getDCD()

gets DCD from AT command handling, assigning the return value to cd.

4.1.7. MDM.getCTS()

This command gets Clear to Send (CTS) from the AT command interface.
It has no input parameter.

The return value is a Python integer which is either 0 if CTS is set to OFF or 1 if CTS is
set to ON.

Example:

cts = MDM.getCTS()

gets CTS from AT command handling, assigning the return value to cts.

4.1.8. MDM.getDSR()

This command gets Data Set Ready (DSR) from the AT command interface.
It has no input parameter.

The return value is a Python integer which is either 0 if DSR is OFF or 1 if DSR is ON.

Example:

dsr = MDM.getDSR()

gets DSR from AT command handling, assigning the return value to dsr.

80378ST10106A Rev. 6 Page 30 of 93 2017-02-16

4.1.9. MDM.getRI()

This command gets Ring Indicator (RI) from the AT command interface.
It has no input parameter.
The return value is a Python integer which is either 0 if RI is set to OFF or 1 if RI is set to
ON.

Example:

ri = MDM.getRI()

gets RI from AT command handling, assigning the return value to ri.

4.1.10. MDM.setRTS(RTS_value)

This command sets Request to Send (RTS) in the AT command interface.
The input parameter RTS_value is a Python integer which is either 0 if setting RTS to OFF
or 1 if setting RTS to ON.
No return value.

Example:

MDM.setRTS(1)

sets RTS to ON in AT command handling.

4.1.11. MDM.setDTR(DTR_value)

This command sets Data Terminal Ready (DTR) in the AT command interface.
The input parameter DTR_value is a Python integer which is either 0 if setting DTR to
OFF or 1 if setting DTR to ON.

No return value.

Example:

MDM.setDTR(0)

sets DTR to OFF in AT command handling.

4.2. MDM2 built-in module

MDM2 built-in module is the second interface between Python and the module internal AT
command handling. It is used to send AT commands from Python script to module and
receive AT responses from module to Python script when the classic MDM built-in module
is already in use.

Though MDM2 built-in module is independent from activation of CMUX protocol, it works
on the second instance of AT parser in the same way the second CMUX port does. So the
rules on AT commands that apply on the first and second CMUX ports (AT parser
instances) apply on MDM and MDM2 as well.

See "AT Commands Reference Guide" and "CMUX User Guide" for details on availability
of AT commands on all instances and for the rules on parallel execution of AT commands
on two instances.

In the default configuration, echo (ATE0) is disabled and the response format of result
codes is set to verbose (ATV1).

80378ST10106A Rev. 6 Page 31 of 93 2017-02-16

If you want to use MDM2 built-in module you need to import it:

import MDM2

than you can use its methods like in the following example:

a = MDM2.send('AT', 0)

b = MDM2.sendbyte(0x0d, 0)

c = MDM2.read()

which sends 'AT' and reads 'OK' response.

More details about MDM2 built-in module methods can be found in the following
paragraphs.

4.2.1. MDM2.setDTR(string, timeout)

This command sends a string to the AT command interface.
The first input parameter string is a Python string to send to the AT command interface.
The second input parameter timeout is a Python integer, measured in 1/10s, and is
important in online mode when flow control is activated. In fact it represents the maximum
time to wait for the string to be sent to the AT command interface when buffer is full and
flow control blocks further data. The timeout range is (0 ÷ 32767).
This method returns immediately after the string has been sent to the AT interface or after
the timeout period if the whole string could not be sent to the AT interface. The return
value is a Python integer which is -1 if the timeout period has expired, 1 otherwise.

Example:

a = MDM2.send('AT', 5)

sends string 'AT' to AT command handling, possibly waiting for 0.5 s, assigning the return
value to a.

NOTE:

the buffer available for MDM2.send command is 32768 bytes for product

versions 12.xx.xxx or 4096 bytes for product versions 13.xx.xxx and

18.11.004.

4.2.2. MDM2.read()

This command receives a string from the AT command interface.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer
at the moment of command execution. The value might be empty if no data is received.

Example:

a = MDM2.read()

receives a string from AT command handling, assigning the return value to a.

80378ST10106A Rev. 6 Page 32 of 93 2017-02-16

NOTE:

the buffer available for MDM2.send command is 32768 bytes for product

versions 12.xx.xxx or 4096 bytes for product versions 13.xx.xxx and

18.11.004. The maximum number of bytes returned by each MDM2.read is

1023.

NOTE:

It is up to Python script to keep empty MDM2.read buffer.

4.2.3. MDM2.sendbyte(byte, timeout)

This command sends a byte to the AT command interface.
The first input parameter byte can be zero or any Python byte to send to the AT command
interface.
The second input parameter timeout is a Python integer, measured in 1/10s, and is
important in online mode when flow control is activated. In fact it represents the maximum
time to wait for the byte to be sent to the AT command interface when buffer is full and
flow control blocks further data. The timeout range is (0 ÷ 32767).
This method returns immediately after the byte has been sent to the AT interface or after
the timeout period if the byte could not be sent to the AT interface. The return value is a
Python integer which is -1 if the timeout expired, 1 otherwise.

Example:

b = MDM2.sendbyte(0x0d, 0)

sends byte 0x0d, that is <CR>, to AT command handling, without waiting, assigning the
return value to b.

4.2.4. MDM2.readbyte()

This command receives a byte from the AT command interface.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer
at the moment of command execution or is -1 if no data is received. The return value can
also be zero.

Example:

b = MDM2.readbyte()

receives a byte from AT command handling, assigning the return value to b.

80378ST10106A Rev. 6 Page 33 of 93 2017-02-16

4.2.5. MDM2.sendavail()

This command queries the number of bytes available to send to MDM2 buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to
MDM2 buffer.

Example:

n = MDM2.sendavail()

queries the number of bytes available to send, assigning the return value to n.

4.2.6. MDM2.getDCD()

This command gets Carrier Detect (DCD) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is 0 if DCD is set to OFF or 1 if DCD is set to
ON.

Example:

cd = MDM2.getDCD()

gets DCD from AT command handling, assigning the return value to cd.

4.2.7. MDM2.getCTS()

This command gets Clear to Send (CTS) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is either 0 if CTS is set to OFF or 1 if CTS is
set to ON.

Example:

cts = MDM2.getCTS()

gets CTS from AT command handling, assigning the return value to cts.

4.2.8. MDM2.getDSR()

This command gets Data Set Ready (DSR) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is either 0 if DSR is set to OFF or 1 if DSR is
set to ON.

Example:

dsr = MDM2.getDSR()

gets DSR from AT command handling, assigning the return value to dsr.

80378ST10106A Rev. 6 Page 34 of 93 2017-02-16

4.2.9. MDM2.getRI()

This command gets Ring Indicator (RI) from the AT command interface.

It has no input parameter.

The return value is a Python integer which is 0 if RI is set to OFF or 1 if RI is set to ON.

Example:

ri = MDM2.getRI()

gets RI from AT command handling, assigning the return value to ri.

4.2.10. MDM2.setRTS(RTS_value)

This command sets Request to Send (RTS) in the AT command interface.

The input parameter RTS_value is a Python integer which is 0 if setting RTS to set to OFF
or 1 if setting RTS to set to ON.

No return value.

Example:

MDM2.setRTS(1)

sets RTS to ON in AT command handling.

4.2.11. MDM2.setDTR(DTR_value)

This command sets Data Terminal Ready (DTR) in the AT command interface.

The input parameter DTR_value is a Python integer which is 0 if setting DTR to set to
OFF or 1 if setting DTR to set to ON.

No return value.

Example:

MDM2.setDTR(0)

sets DTR to OFF in AT command handling.

4.3. SER built-in module

The SER built-in module is an interface between the Python core and the device serial
port over the RXD/TXD pins direct handling. You need to use the SER built-in module if
you want to send data from the Python script to the serial port USIF0 and to receive data
from the serial port USIF0 to the Python script. This serial port handling module can be
used, for example, to interface the module with an external device (such as a GPS) and
read/send its data (e.g. NMEA). If flow control is not enabled (default) the SER built-in
module will also allow to control physical lines used as GPIO. If flow control is enabled,
only available from version 12.00.xx4, version 13.00.xx5 and version 18.11.004, it will not
be possible to control physical lines used as GPIO.

80378ST10106A Rev. 6 Page 35 of 93 2017-02-16

If you want to use SER built-in module you need to import it:

import SER

then you can use its methods, like in the following example:

a = SER.set_speed('9600')

b = SER.send('test')

c = SER.sendbyte(0x0d)

d = SER.read()

which sends 'test' followed by <CR> and receives data.

More details about SER built-in module methods can be found in the following
paragraphs.

4.3.1. SER.send(string, <timeout>)

This command sends a string to the serial port TXD/RXD.

The first input parameter string is a Python string to send to the serial port USIF0.

The second input parameter <timeout> is optional, is only available from version
12.00.xx4, version 13.00.xx5 and version 18.11.004, is a Python integer, measured in
1/10s, and is only used when flow control is enabled. In fact it represents the maximum
time to wait for the string to be sent to the serial port USIF0 when buffer is full and flow
control blocks further data. The timeout range is (0 ÷ 32767).

This method returns immediately after the string has been sent to the serial port USIF0 or,
when flow control is enabled, after the timeout period if the whole string could not be sent
to the serial port USIF0. The return value is a Python integer which is -1 if the timeout
period has expired, 1 otherwise.

Example:

a = SER.send('test')

sends the string 'test' to the serial port USIF0 handling, assigning the return value to a.

NOTE:

the buffer available for SER.send command is 4096 bytes.

4.3.2. SER.read()

This command receives a string from the serial port TXD/RXD.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer
at the moment of command execution. The value might be empty if no data is received.

Example:

a = SER.read()

receives a string from the serial port USIF0 handling, assigning the return value to a.

80378ST10106A Rev. 6 Page 36 of 93 2017-02-16

NOTE:

the buffer available for SER.read command is 4096 bytes. The maximum

number of bytes returned by each SER.read is 1023.

NOTE:

It is up to Python script to keep empty SER.read buffer.

4.3.3. SER.sendbyte(byte, <timeout>)

This command sends a byte to the serial port TXD/RXD.

The first input parameter byte can be zero or any Python byte to send to the serial port
USIF0.

The second input parameter <timeout> is optional, is only available from version
12.00.xx4, version 13.00.xx5 and version 18.11.004, is a Python integer, measured in
1/10s, and is only used when flow control is enabled. In fact it represents the maximum
time to wait for the byte to be sent to the serial port USIF0 when buffer is full and flow
control blocks further data. The timeout range is (0 ÷ 32767).

This method returns immediately after the byte has been sent to the serial port USIF0 or,
when flow control is enabled, after the timeout period if the byte could not be sent to the
serial port USIF0. The return value is a Python integer which is -1 if the timeout period has
expired, 1 otherwise.

Example:

b = SER.sendbyte(0x0d)

sends the byte 0x0d, that corresponds to <CR>, to the serial port USIF0 handling,
assigning the return value to b.

4.3.4. SER.readbyte()

This command receives a byte from the serial port TXD/RXD.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer
at the moment of command execution or is -1 if no data is received. The return value can
also be zero.

Example:

b = SER.readbyte()

receives a byte from serial port USIF0 handling, assigning the return value to b.

80378ST10106A Rev. 6 Page 37 of 93 2017-02-16

4.3.5. SER.readavail()

This command queries the number of bytes available to send to SER buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to
SER buffer.

Example:

n = SER.sendavail()

queries the number of bytes available to send, assigning the return value to n.

4.3.6. SER.set_speed(speed, <char format>,<flow control>)

This command sets the serial port TXD/RXD speed. The default serial port TXD/RXD
speed is 115200.

The first input parameter speed is a Python string which is the value of the serial port
speed. It can assume values in the range from '300' to '115200'.

The second optional parameter <char format> is a Python string that represents the
character format to be used:

the first character is the number of bits per char (7 or 8), then the parity setting (N - none,
E- even, O- odd) and in the end the number of stop bits (1 or 2). The default value is
"8N1". For version 18.11.004 only "8N1" value is available

The third optional parameter <flow control> is only available from version 12.00.xx4,
version 13.00.xx5 and version 18.11.004 and is a Python string that represents the flow
control mode to be used:

"none" set no flow control enabled,

"hw" set hardware flow control enabled.

The default value is "none".

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:

b = SER.set_speed('9600')

sets the serial port USIF0 speed to 9600, assigning the return value to b.

NOTE:

 Sending the +IPR command to the device does not affect the physical serial

port, you must use this function to set the speed of the port when using the

Python engine.

80378ST10106A Rev. 6 Page 38 of 93 2017-02-16

4.3.7. SER.setDCD(DCD_value)

This command sets Carrier Detect (DCD) on the serial port USIF0.

From version 12.00.xx4, version 13.00.xx5 and version 18.11.004 this command has no
effect if flow control is enabled.

The input parameter DCD_value is a Python integer which is either 0 if DCD is set to OFF
or 1 if DCD is set to ON.

No return value.

Example:

SER.setDCD(1)

sets DCD to ON in USIF0.

4.3.8. SER.setCTS(CTS_value)

This command sets Clear to Send (CTS) on the serial port USIF0.

From version 12.00.xx4, version 13.00.xx5 and version 18.11.004 this command has no
effect if flow control is enabled.

The input parameter CTS_value is a Python integer which is either 0 if CTS is set to OFF
or 1 if CTS is set to ON.

No return value.

Example:

SER.setCTS(1)

sets CTS to ON in USIF0.

4.3.9. SER.setDSR(DSR_value)

This command sets Data Set Ready (DSR) on the serial port USIF0.

From version 12.00.xx4, version 13.00.xx5 and version 18.11.004 this command has no
effect if flow control is enabled.

The input parameter DSR_value is a Python integer which is either 0 if DSR is set to OFF
or 1 if DSR is set to ON.

No return value.

Example:

SER.setDSR(1)

sets DSR to ON in USIF0.

80378ST10106A Rev. 6 Page 39 of 93 2017-02-16

4.3.10. SER.setRI(RI_value)

This command sets Ring Indicator (RI) on the serial port USIF0.

From version 12.00.xx4, version 13.00.xx5 and version 18.11.004 this command has no
effect if flow control is enabled.

The input parameter RI_value is a Python integer which is either 0 if RI is set to OFF or 1
if RI is set to ON.

No return value.

Example:

SER.setRI(1)

sets RI to ON in USIF0.

4.3.11. SER.getRTS()

This command gets Request to Send (RTS) from the serial port USIF0.

It has no input parameter.

The return value is a Python integer which is either 0 if RTS is set to OFF or 1 if RTS is
set to ON.

Example:

rts = SER.getRTS()

gets RTS from USIF0, assigning the return value to rts.

4.3.12. SER.getDTR()

This command gets Data Terminal Ready (DTR) from the serial port USIF0.

It has no input parameter.

The return value is a Python integer which is either 0 if DTR is set to OFF or 1 if DTR is
set to ON.

Example:

dtr = SER.getDTR()

gets DTR from USIF0, assigning the return value to dtr.

4.4. SER2 built-in module

SER2 built-in module is available only for product versions from 12.00.xx4, from 13.00.xx5
and from 18.11.004.

The SER2 built-in module is an interface between the Python core and the device trace
serial port over the RX_AUX/TX_AUX pins direct handling. You need to use the SER2
built-in module if you want to send data from the Python script to the serial port USIF1 and
to receive data from the serial port USIF1 to the Python script. This serial port has not the
flow control physical lines.

This module is available for all products.

It is Python script developer responsibility to use it properly.

80378ST10106A Rev. 6 Page 40 of 93 2017-02-16

In fact serial port USIF1 is usually dedicated to trace and debug purposes and importing
this module will make trace and debug unavailable. Moreover importing this module might
interfere with device serial port configuration (see HE910 UE910 Family Ports
Arrangements User Guide from version 12.xx.xx4, GE910 Family Ports Arrangements
User Guide from version 13.xx.xx5 or CE Family Ports Arrangements User Guide for
version 18.11.004).

If you want to use SER2 built-in module you need to import it:

import SER2

then you can use its methods, like in the following example:

a = SER2.set_speed('9600')

b = SER2.send('test')

c = SER2.sendbyte(0x0d)

d = SER2.read()

which sends 'test' followed by <CR> and receives data.

More details about SER2 built-in module methods can be found in the following
paragraphs.

4.4.1. SER2.send(string)

This command sends a string to the serial port USIF1.

The input parameter string is a Python string to send to the serial port USIF1.

The return value is a Python integer which is -1 if the timeout period has expired, 1
otherwise.

Example:

a = SER2.send('test')

sends the string 'test' to the serial port USIF1 handling, assigning the return value to a.

NOTE:

 the buffer available for SER2.send command is 4096 bytes.

4.4.2. SER2.read()

This command receives a string from the serial port USIF1.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer
at the moment of command execution. The value might be empty if no data is received.

Example:

a = SER2.read()

receives a string from the serial port USIF1 handling, assigning the return value to a.

80378ST10106A Rev. 6 Page 41 of 93 2017-02-16

NOTE:

The buffer available for the SER2.read command is 4096 bytes. The

maximum number of bytes returned by each SER2.read is 1023.

NOTE:

 It is up to Python to keep empty SER2.read buffer.

4.4.3. SER2.sendbyte(byte)

This command sends a byte to the serial port USIF1.

The input parameter byte can be zero or any Python byte to send to the serial port
USIF1.

The return value is a Python integer which is -1 if the timeout period has expired, 1
otherwise.

Example:

b = SER2.sendbyte(0x0d)

sends the byte 0x0d, that corresponds to <CR>, to the serial port USIF1 handling,
assigning the return value to b.

4.4.4. SER2.readbyte()

This command receives a byte from the serial port USIF1.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer
at the moment of command execution or is -1 if no data is received. The return value can
also be zero.

Example:

b = SER2.readbyte()

receives a byte from serial port USIF1 handling, assigning the return value to b.

4.4.5. SER2.sendavail()

This command queries the number of bytes available to send to SER2 buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to
SER2 buffer.

Example:

80378ST10106A Rev. 6 Page 42 of 93 2017-02-16

n = SER2.sendavail()

queries the number of bytes available to send, assigning the return value to n.

4.4.6. SER2.set_speed(speed, <char format>)

This command sets the serial port USIF1 speed. The default serial port USIF1 speed is
115200.

The first input parameter speed is a Python string which is the value of the serial port
speed. It can assume the values in the range from '300' to '115200'.

The second optional parameter <char format> is a Python string that represents the
character format to be used:

the first character is the number of bits per char (7 or 8), then the parity setting (N - none,
E- even, O- odd) and in the end the number of stop bits (1 or 2). The default value is
"8N1".

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:

b = SER2.set_speed('9600')

sets the serial port USIF1 speed to 9600, assigning the return value to b.

4.5. GPIO built-in module

The GPIO built-in module is an interface between the Python core and the module internal
general purpose input output direct handling. The GPIO built-in module is used to set
GPIO values and to read GPIO values from the Python script. You can control the GPIO
pins also by sending internal 'AT#GPIO' commands using the MDM module, but using the
GPIO module is faster because no command parsing is involved, therefore its use is
recommended.

NOTE:

The Python core does not verify if the pins are already used for other

purposes by other functions, it's the customer responsibility to ensure that no

conflict over pins occurs.

If you want to use the GPIO built-in module you need to import it:

import GPIO

then you can use its methods as in the following example:

a = GPIO.getIOvalue(5)

b = GPIO.setIOvalue(4, 1)

this reads the GPIO 5 value and sets GPIO 4 to the output with value 1.

More details about GPIO built-in module methods are in the following paragraphs.

80378ST10106A Rev. 6 Page 43 of 93 2017-02-16

4.5.1. GPIO.setIOvalue(GPIOnumber, value)

This method sets the output value of a GPIO pin.

The first input parameter GPIOnumber is a Python integer which is the number of the
GPIO.

The second input parameter value is a Python integer which is the output value. It can be
0 or 1.

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:

b = GPIO.setIOvalue(4, 1)

sets GPIO 4 to output with value 1, assigning the return value to b.

NOTE:

For versions up to 12.00.xx5 this method returns -1 if the GPIOnumber is not

set to output.

4.5.2. GPIO.getIOvalue(GPIOnumber)

This method gets the input value of a GPIO.

The input parameter GPIOnumber is a Python integer which is the number of the GPIO.

The return value is a Python integer which is -1 if an error occurred otherwise it is the
input value. It can be either 0 or 1.

Example:

b = GPIO.getIOvalue(5)

gets the GPIO 5 input value, assigning the return value to b.

NOTE:

For versions up to 12.00.xx5 this method returns -1 if the GPIOnumber is not

set to output.

4.5.3. GPIO.setIOdie(GPIOnumber, value, direction)

This method sets the direction of a GPIO.

The first input parameter GPIOnumber is a Python integer which is the number of the
GPIO.

The second input parameter value is a Python integer which is the output value. It can be
either 0 or 1. It is only used if the direction value is 1, it has no meaning if the direction
value is 0.

The third input parameter direction is a Python integer which is the direction value. It can
be either 0 for input or 1 for output. Other values are available for alternate functions.

80378ST10106A Rev. 6 Page 44 of 93 2017-02-16

Refer to AT#GPIO command in product "AT Commands Reference Guide" for further
notes (value is called mode).

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

Example:

c = GPIO.setIOdir(4, 0, 0)

sets GPIO 4 to input with the value parameter having no meaning, and assigning the
return value to c.

NOTE:

When the direction value is not 1, although the parameter value has no

meaning, it is necessary to assign it one of the two possible values: 0 or 1.

NOTE:

For version 18.11.004 the direction values for alternate functions are not

supported.

4.5.4. GPIO.getIOdir(GPIOnumber)

This method gets the direction of a GPIO.

The input parameter GPIOnumber is a Python integer which is the number of the GPIO.

The return value is a Python integer which is -1 if an error occurred otherwise is direction
value. It is 0 for input or 1 for output. Other values are available for alternate functions.
Refer to AT#GPIO command in product "AT Commands Reference Guide" for further
notes.

Example:

d = GPIO.getIOdir(7)

gets GPIO 7 direction, assigning the return value to d.

NOTE:

For version 18.11.004 the return values for alternate functions are not

supported.

4.5.5. GPIO.getADC(adcNumber)

This method gets ADC value. It is equivalent to the AT#ADC command.

The input parameter adcNumber is a Python integer which represents the ADC number
that will be read and converted in voltage.

80378ST10106A Rev. 6 Page 45 of 93 2017-02-16

The return value is a Python integer which is -1 if an error occurred otherwise the
converted voltage is returned in mV.

Example:

mV = GPIO.getADC(2)

gets ADC number 2 input voltage, assigning the return value in mV.

NOTE:

 For version 18.11.004 the only available value for adcNumber is 1.

4.5.6. GPIO.setDAC(enable, value)

This method sets the DAC value. It is equivalent to the AT#DAC command.

The first input parameter enable is a Python integer and can assume values 0 or 1. If it is
set to 1 enables DAC output otherwise if it is set to 0 disabled DAC output.

The second input parameter value is a Python integer and represents the scale factor of
output voltage and can assume values in the range 0-1023.

The return value is a Python integer that has value -1 if an error occurred otherwise it has
value 1.

Example:

res = GPIO.setDAC(1, 512)

sets DAC output voltage at half the range, assigning the return value to res.

NOTE – For version 18.11.004 this method is not available.

4.5.7. GPIO.setVAUX(vauxNumber, enable)

This method enables or disables the VAUX. It is equivalent to the AT#VAUX command.

The first input parameter vauxNumber is a Python integer that represents VUAX number
that will be enabled or disabled.

The second input parameter enable is a Python integer that can assume value 1 in order
to enable VAUX output or 0 if VAUX output should be disabled.

The return value is a Python integer that has value -1 if an error occurred otherwise it has
the value 1.

Example:

res = GPIO.setVAUX(1, 1)

enables VAUX number 1 output, assigning the return value to res.

80378ST10106A Rev. 6 Page 46 of 93 2017-02-16

NOTE – For version 18.11.004 the only available value for vauxNumber is 1.

4.5.8. GPIO.getAXE()

This method gets the hands free status value. It is equivalent to the AT#AXE command.

It has no input parameter.

The return value is a Python integer that is either 0 if a hand free is not connected or 1 if a
hand free is connected.

Example:

hf = GPIO.getAXE()

gets the AXE value, assigning the return value to hf.

NOTE:

For version 18.11.004 this method has no effect.

4.5.9. GPIO.setSLED(status, onDuration, offDuration)

This method sets the status led configuration values. It is equivalent to the AT#SLED
command.

The first input parameter status is a Python integer that represents the configuration of
status led and can assume the following values:

0 - ALWAYS OFF

1 - ALWAYS ON

2 - AUTO

3 - BLINKING

The second input parameter onDuration is a Python integer which is the period of ON
configuration of status led measured in 1/10s.

The third input parameter offDuration is a Python integer which is the period of OFF
configuration of status led measured in 1/10s.

The return value is a Python integer which is -1 if an error occurred otherwise it is 1.

Example:

res = GPIO.setSLED(3, 10, 90)

sets status led configuration to blinking with 1s in ON period and 9s in OFF period,
assigning the return value to res.

80378ST10106A Rev. 6 Page 47 of 93 2017-02-16

4.5.10. GPIO.getCBC()

This method gets the charger status and battery voltage. It is equivalent to the AT#CBC
command.

It has no input parameters.

The return value is a Python tuple formatted in the following way:

(chargerStatus, batteryVoltage).

First element of tuple is a Python integer which is charger status:

0 - charger not connected

1 - charger connected and charging

2 - charger connected and charging process completed

Second element of tuple is a Python integer which is battery voltage in mV.

Example:

cbc = GPIO.getCBC()

gets charger status and battery voltage values, assigning the return value to cbc tuple.

NOTE:

For version 18.11.004 the return values 1 and 2 for charger status are not

supported.

4.6. GPS built-in module

GPS built-in module is available only for product versions 12.xx.xxx and from 13.00.xx4.

GPS built-in module is the interface between Python and module internal GPS controller.
It is used in order to handle GPS controller without dedicated AT commands through
MDM built-in module.

If you want to use GPS built-in module you need to import it:

import GPS

then you can use its methods like in the following example:

position = GPS.getActualPosition()

gets a string with position information formatted in the same way as AT$GPSACP
response.

More details about GPS built-in module methods can be found in the following
paragraphs.

80378ST10106A Rev. 6 Page 48 of 93 2017-02-16

4.6.1. GPS.powerOnOff(newStatus)

This method powers ON/OFF GPS controller. It is equivalent to the AT$GPSP command.

The input parameter newStatus is a Python integer and can have the following values:

0 - to power OFF GPS controller

1 - to power ON GPS controller.

There is no return value.

Example:

GPS.powerOnOff(0)

GPS controller is powered OFF.

4.6.2. GPS.getPowerOnOff()

This method gets GPS controller current power ON/OFF status.

It has no input parameter.

The return value is a Python integer which is 0 if GPS controller is powered off or 1 if GPS
controller is powered on.

Example:

status = GPS.getPowerOnOff()

gets GPS controller current power ON/OFF status, assigning the return value to status.

4.6.3. GPS.resetMode(mode)

This method resets GPS controller. It is equivalent to the AT$GPSR command.

The input parameter mode is a Python integer and can have the following values:

0 - Hardware reset

1 - Coldstart (No Almanac, No Ephemeris);

2 - Warmstart (No Ephemeris);

3 - Hotstart (with stored Almanac and Ephemeris)

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

This method is available only for product versions from 12.00.xx6 and from 13.00.xx7.

Example:

res = GPS.resetMode(1)

executes a cold restart of GPS controller, assigning the return value to res.

4.6.4. GPS.getActualPosition()

This method gets GPS last position information. It is equivalent to the AT$GPSACP
command.

It has no input parameter.

The return value is a Python string which is the last position information formatted in the
same way as for AT$GPSACP command response.

80378ST10106A Rev. 6 Page 49 of 93 2017-02-16

Example:

lastPosition = GPS.getActualPosition()

gets GPS last position information, assigning the return value to lastPosition.

4.6.5. GPS.powerSavingMode(mode, pushToFixPeriod)

This method sets GPS controller power saving mode. It is equivalent to the AT$GPSPS
command.

The first input parameter mode is a Python integer and can have the following values:

0 - Power Saving disabled – Continuous Power (default);

1 - Trickle Power activated;

2 - Push To Fix Mode enabled.

The second input parameter pushToFixPeriod is a Python integer which is the value of
push to fix period in seconds used when mode=2. If mode= 0 or mode= 1 this parameter
has no meaning and can be set to any value.

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

TeseoII-based GNSS receiver currently does not support power saving.

This method is available only for product versions from 12.00.xx6 and from 13.00.xx7.

Example:

res = GPS.powerSavingMode(2, 15)

sets GPS controller in power saving mode 2 with push to fix period of 15 seconds,
assigning the return value to res.

4.6.6. GPS.powerSavingWakeUp()

This method wakes up GPS controller while in power saving mode. It is equivalent to the
AT$GPSWK command.

It has no input parameter.

The return value is a Python integer which is -1 if an error occurred otherwise is 1.

TeseoII-based GNSS receiver currently does not support power saving.

This method is available only for product versions from 12.00.xx6 and from 13.00.xx7.

Example:

res = GPS.powerSavingWakeUp()

wakes up GPS controller while in power saving, assigning the return value to res.

4.6.7. GPS.getLastGGA()

This method gets GPS last GGA NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last GGA NMEA sentence formatted
according to NMEA specification.

80378ST10106A Rev. 6 Page 50 of 93 2017-02-16

Example:

gga = GPS.getLastGGA()

gets last GGA NMEA sentence, assigning the return value to gga.

4.6.8. GPS.getLastGLL()

This method gets GPS last GLL NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last GLL NMEA sentence formatted
according to NMEA specification.

Example:

gll = GPS.getLastGLL()

gets last GLL NMEA sentence, assigning the return value to gll.

4.6.9. GPS.getLastGSA()

This method gets GPS last GSA NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last GSA NMEA sentence formatted
according to NMEA specification.

Example:

gsa = GPS.getLastGSA()

gets last GSA NMEA sentence, assigning the return value to gsa.

4.6.10. GPS.getLastGSV()

This method gets GPS last GSV NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the concatenation of the last GSV NMEA
sentences formatted according to NMEA specification.

Example:

gsv = GPS.getLastGSV()

gets last GSV NMEA sentence, assigning the return value to gsv.

80378ST10106A Rev. 6 Page 51 of 93 2017-02-16

4.6.11. GPS.getLastRMC()

This method gets GPS last RMC NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last RMC NMEA sentence formatted
according to NMEA specification.

Example:

rms = GPS.getLastRMC()

gets last RMC NMEA sentence, assigning the return value to rmc.

4.6.12. GPS.getLastVTG()

This method gets GPS last VTG NMEA sentence stored.

It has no input parameter.

The return value is a Python string which is the last VTG NMEA sentence formatted
according to NMEA specification.

Example:

vtg = GPS.getLastVTG()

gets last VTG NMEA sentence, assigning the return value to vtg.

4.6.13. GPS.getPosition()

This method gets GPS last position stored in numeric format.

It has no input parameter.

The return value is a Python tuple formatted in the following way:

(latitude, latNorS, longitude, lonEorW)

where:

 the first element of tuple latitude is a Python integer which is latitude in
(degrees * 10000000), that is in degrees with 10000000 scale factor

 the second element of tuple latNorS is a Python string which is ‘N’ for north or ‘S’
for south

 the third element of tuple longitude is a Python integer which is longitude in
(degrees * 10000000), that is in degrees with 10000000 scale factor

 fourth element of tuple lonEorW is a Python string which is ‘E’ for east or ‘W’ for
west.

If GPS controller has no position information the following tuple will be returned:

(0, '', 0, '').

This method is available only for product versions from 12.00.xx6 and from 13.00.xx7.

Example:

pos = GPS.getPosition()

gets last position stored, assigning the return value to pos.

80378ST10106A Rev. 6 Page 52 of 93 2017-02-16

4.7. IIC built-in module

IIC built-in module is available only for product versions from 12.00.xx4, from 13.00.xx5
and from 18.11.004.

IIC built-in module is an implementation on the Python core of the IIC bus Master (No
Multi-Master) based on general purpose input output (GPIO) using the bit-banging
technique.

IIC built-in module allows creating one or more IIC bus Python objects on the available
GPIO pins. These IIC bus Python objects are each mapped on creation on two GPIO pins
that will be dedicated to the Serial Data and Serial Clock pins of each IIC bus.

If you want to use IIC built-in module you need to import it:

import IIC

then you can use its methods like in the following example:

IICbus = IIC.new(3, 4, 0x50)

IICbus.init()

rec = IICbus.readwrite('\x08'+'test', 10)

creates a new IIC bus object using GPIOs 3 and 4, with address 0x50, and then sends 08
hex byte followed by 'test' and receives a string of 10 bytes assigning it to rec.

More details about IIC built-in module methods can be found in the following paragraphs.

NOTE:

An external pull-up must be provided on SDA line since the line is working as

open collector, on the hand SCLK is driven with a complete push pull.

4.7.1. IIC.new(SDA_pin, SCL_pin, ADDR)

This command creates a new IIC bus Python object linked to given GPIO pins and with
specified address.

The first two input parameters SDA_pin and SCL_pin are Python bytes, which are the
GPIO pin numbers the SDA (Serial DAta) and SCL (Serial CLock) lines are mapped to.

The third input parameter ADDR is a Python integer and represents the address of IIC bus
device. It is the address value of the IIC bus device without the less significant bit required
by IIC bus protocol for R/W (read/write) command. It can be a 7 bit address or a 10 bit
address. It can be zero.

The return value is the IIC bus Python object which shall then be used to interface to the
IIC bus device.

NOTE:

All GPIO pins are available pins for the IIC bus.

It is Python script developer responsibility to avoid conflicts between GPIO

pins, no automatic check of GPIO pins already used for other purposes (GPIO

module, IIC module, SPI module) is available.

80378ST10106A Rev. 6 Page 53 of 93 2017-02-16

NOTE:

Python core implementation takes the third input parameter ADDR, shifts it left

by one bit and sets R/W (read/write) bit on the less significant bit of the less

significant byte.

Example:

IICbus = IIC.new(3, 4, 0x50)

creates a new IIC bus object using GPIO 3 for SDA, GPIO 4 for SCL and with address
0x50.

4.7.2. init()

This IIC bus Python object method initializes the IIC bus.

No input value.

No return value.

Example:

IICbus.init()

initializes IIC bus object.

4.7.3. readwrite(string, <read_len>)

This IIC bus Python object method sends a string to and/or receives a string from the IIC
bus device linked to the IIC bus Python object at its creation.

The first input parameter string is a Python string to send to the IIC bus device.

The second optional parameter <read_len> is a Python integer which represents the
length of the data to be received from the IIC bus device. Default value if omitted is 0.
read_len value range is (0 ÷254).

The return value is a Python integer with value -1 if an error occurred or is a Python string
which contains the data received, in the last case the value might be empty if no data is
received.

If the address ADDR set at IIC bus Python object creation is not 0:

 if string is not empty it will be sent to IIC bus device (Write);

 if read_len is greater than 0 a string will be received from IIC bus device (Read);

 if string is not empty and read_len is greater than 0 first string will be sent to IIC
bus device (Write) and then a string will be received from IIC bus device (Read).

80378ST10106A Rev. 6 Page 54 of 93 2017-02-16

If the address ADDR set at IIC bus Python object creation is 0:

 if string is not empty and it is at least 2 bytes long and read_len is 0 it will be sent
to a generic IIC bus device (Write) whose address and W bit must be set properly
by Python script developer in first byte of string;

 if string is not empty and it is at least one byte long and read_len is greater than 0
it will be sent to a generic IIC bus device whose address and R bit must be set
properly by Python script developer in first byte of string and then a string will be
received from IIC bus device (Read);

 it is not possible a Write and Read operation in the same readwrite call.

Examples:

IICbus = IIC.new(3, 4, 0x50)

IICbus.init()

rec = IICbus.readwrite('\x08'+'test', 10)

sends 08 hex byte followed by 'test' and then receives a string of 10 bytes assigning it to
rec.

rec = IICbus.readwrite('\x08'+'test', 0)

sends only 08 hex byte followed by 'test'.

rec = IICbus.readwrite('\x08', 10)

sends 08 hex byte and then receives a string of 10 bytes assigning it to rec.

rec = IICbus.readwrite('', 10)

receives only a string of 10 bytes assigning it to rec.

4.8. SPI built-in module

SPI built-in module is available only for product versions from 12.00.xx4 and from
13.00.xx5.

SPI built-in module is an implementation on the Python core of the SPI bus Master based
on general purpose input output (GPIO) using the bit-banging technique.

SPI built-in module allows creating one or more SPI bus Python objects on the available
GPIO pins. These SPI bus Python objects are each mapped on creation on three GPIO
pins that will be dedicated to the Master Input Slave Output, Master Output Slave Input,
Serial Clock pins of each SPI bus and optionally on up to 8 other GPIO pins as Chip
Select/Slave select pins.

If you want to use SPI built-in module you need to import it:

import SPI

then you can use its methods like in the following example:

SPIbus = SPI.new(3, 4, 5, 6, 7)

SPIbus.init(0, 0, 0, 0)

rec = SPIbus.readwrite('test', 4)

creates a new SPI bus object using GPIOs 3, 4, 5, 6 and 7, and then sends 'test' and
receives a string of 4 bytes assigning it to rec.

More details about SPI built-in module methods can be found in the following paragraphs.

80378ST10106A Rev. 6 Page 55 of 93 2017-02-16

4.8.1. SPI.new(SCLK_pin, MOSI_pin, MISO_pin, <SS0>,<SS1>,…,<SS7>)

This command creates a new SPI bus Python object linked to given GPIO pins.

The first three input parameter SCLK_pin, MOSI_pin and MISO_pin are Python bytes,
which are the GPIO pin numbers the SCLK (Serial CLocK), MOSI (Master Output Slave
Input) and MISO (Master Input Slave Output) lines are mapped to.

The following up to 8 optional parameters <SSi> are Python bytes, which are the GPIO
pin numbers the SSi (ith Slave Select) lines are mapped to. The SSi parameter are
optional because not all SPI devices have a Slave Select (SS) line, called Chip Select
(CS) line as well. The SSi parameters must be used for those SPI devices that needs to
be selected by Slave Select line.

The return value is the SPI bus Python object which shall then be used to interface to the
SPI bus device.

NOTE:

All GPIO pins are available pins for the SPI bus.

It is Python script developer responsibility to avoid conflicts between GPIO

pins, no automatic check of GPIO pins already used for other purposes (GPIO

module, IIC module, SPI module) is available.

Example:

SPIbus = SPI.new(3, 4, 5, 6, 7)

creates a new SPI bus object using GPIO 3 for SCLK, GPIO 4 for MOSI, GPIO 5 for
MISO, GPIO 6 for SS0, GPIO 7 for SS1.

4.8.2. init(CPOL, CPHA, <SSPOL>,<SS>)

This SPI bus Python object method initializes the SPI bus.

The first input parameter CPOL is a Python byte, represents Clock polarity and can have
the following values:

0 for polarity low;

1 for polarity high.

The second input parameter CPHA is a Python byte, represents Clock phase transmission
and can have the following values:

0 for data bit clocked/latched on the first edge of SCLK;

1 for data bit clocked/latched on the second edge of SCLK

The third optional parameter <SSPOL> is a Python byte, represents the Slave Select
polarity and can have the following values:

0 for polarity low (default value if omitted);

1 for polarity high.

80378ST10106A Rev. 6 Page 56 of 93 2017-02-16

The fourth optional parameter <SS> is a Python byte, represents the default Slave Select
line number to be used among those linked to the SPI bus Python object at its creation
and can have values from 0 to 7.

Default behavior if omitted is that, unless SS parameter present in readwrite, no SS line
will be used.

Behavior if present is that, unless SS parameter present in readwrite, this SS line will be
used.

The return value is a Python integer, which is -1 if an error occurred, otherwise is 1.

Example:

SPIbus.init(0, 0, 0)

initializes SPI bus object: no SS line is defined as default and no SS line will be used
unless set in readwrite.

SPIbus.init(0, 0, 0, 1)

initializes SPI bus object: SS line 1 is defined as default and second SS line assigned in
SPI.new will be used unless set in readwrite.

4.8.3. readwrite(string, <read_len>,<SS>)

This SPI bus Python object method sends a string to and/or receives a string from the SPI
bus device linked to the SPI bus Python object at its creation.

The first input parameter string is a Python string to send to the SPI bus device.

The second optional parameter <read_len> is a Python integer which represents the
length of the data to be received from the SPI bus device. Default value if omitted is 0.
read_len value range is (0 ÷254).

The third optional input parameter <SS>, is a Python byte, represents the Slave Select
line number to be used among those linked to the SPI bus Python object at its creation
and can have values from 0 to 7

Default behavior if omitted is that SS default line specified in init will be used, if any.

Behavior if present is that this SS line will be used regardless of what set in init.

The return value is a Python integer with value -1 if an error occurred or is a Python string
which contains the data received, in the last case the value might be empty if no data is
received.

If the length of data to be received read_len is less than the string to send string length:

 only the first read_len bytes will be saved during the transmission of string bytes.

If the length of data to be received read_len is greater than the string to send string length:

 all the read_len bytes will be saved during transmission of string bytes plus the
number of 0x00 bytes necessary to complete the receive.

Example:

rec = SPIbus.readwrite('test', 4)

sends 'test' and receives a string of 4 bytes assigning it to rec.

80378ST10106A Rev. 6 Page 57 of 93 2017-02-16

4.9. MOD built-in module

MOD built-in module is available only for product versions from 12.00.xx4 and from
13.00.xx5.

MOD built-in module is the interface between Python and the module miscellaneous
functions.

If you want to use MOD built-in module you need to import it:

import MOD

then you can use its methods like in the following example:

MOD.watchdogEnable(60)

starts software watchdog protection.

More details about MOD built-in module methods can be found in the following
paragraphs.

4.9.1. MOD.watchdogEnable(timeout)

This method activates the software watchdog protection of the system against script
blocking by performing an automatic reboot of the module when the watchdog reaches a
determined value. To avoid system reboot MOD.watchdogReset() command must be
called periodically.

The input parameter timeout is an integer, which is measured in seconds and represents
the time to wait before executing the system reboot. The timeout range is (1 ÷ 36000 (10
hours)).

No return value.

Example:

MOD.watchdogEnable(60)

activates watchdog that after 60sec from execution of this command will reboot the
module unless MOD.watchdogReset() is called.

4.9.2. MOD.watchdogReset()

This method restarts the software watchdog counter that has been previously activated
with the command MOD.watchdogEnable(timeout) preventing in this way the reboot of the
module. It should be added in every part of the script that can cause a script blocking
(loops, etc.) and is used only when Python watchdog is enabled.

No input value.

No return value.

Example:

MOD.watchdogReset()

restarts watchdog counter.

80378ST10106A Rev. 6 Page 58 of 93 2017-02-16

4.9.3. MOD.watchdogDisable()

This method disables the software watchdog protection that has been previously activated
with the command MOD.watchdogEnable(timeout). Software watchdog should be
disabled before scripts critical lines such as import, since it takes a long time, and then
enabled again after.

No input value.

No return value.

Example:

MOD.watchdogDisable()

disables watchdog.

4.9.4. MOD.powerSaving(timeout)

This method blocks script execution and sets the system in power saving mode for a
given time interval or until an external event occurs (e.g. incoming call RING). Blocking
script execution is necessary for power saving conditions to be achieved. Setting power
saving mode is equivalent to AT+CFUN=0 command (see Telit Modules Software User
Guide for further details).

The input parameter timeout is an integer, which is measured in seconds and represents
the maximum time the Python script remains blocked. The Python script will exit power
saving mode when the given value of timeout is reached or when an external event occurs
(e.g. incoming call RING). If the timeout value is -1 the Python script will exit from power
saving mode only when an external event occurs. The timeout value can be -1 or in the
range (0 ÷ 1800000 (500 hours)).

The return value is a Python integer which is 0 if the Python script has exited power
saving mode because an external event has occurred otherwise it is 1 if the Python script
has exited power saving mode because the timeout has expired.

Example:

cause = MOD.powerSaving(100)

blocks Python script and enters power saving mode for a maximum of 100 sec or until an
external event occurs.

4.10. USB0 built-in module

USB0 built-in module is available only for product versions from 12.00.xx5 and from
13.00.xx6.

The USB0 built-in module is an interface between the Python core and the device first
mini USB port USB0. You need to use the USB0 built-in module if you want to send data
from the Python script to the first mini USB port USB0 and to receive data from the first
mini USB port USB0 to the Python script. This USB port handling module can be used, for
example, to interface the module with an external device and read/send its data.

If you want to use USB0 built-in module you need to import it:

import USB0

then you can use its methods, like in the following example:

b = USB0.send('test')

c = USB0.sendbyte(0x0d)

80378ST10106A Rev. 6 Page 59 of 93 2017-02-16

d = USB0.read()

which sends 'test' followed by <CR> and receives data.

More details about USB0 built-in module methods can be found in the following
paragraphs.

4.10.1. USB0.send(string, <timeout>)

This command sends a string to the first mini USB port USB0.

The first input parameter string is a Python string to send to the first mini USB port USB0.

The second input parameter <timeout> is optional and is a Python integer, measured in
1/10s. It represents the maximum time to wait for the string to be sent to the first mini USB
port USB0 when buffer is full and further data is blocked. The timeout range is (0 ÷
32767).

This method returns immediately after the string has been sent to the first mini USB port
USB0 or after the timeout period if the whole string could not be sent to the first mini USB
port USB0. The return value is a Python integer which is -1 if the timeout period has
expired, 1 otherwise.

Example:

a = USB0.send('test')

sends the string 'test' to the first mini USB port USB0 handling, assigning the return value
to a.

NOTE:

The buffer available for the USB0.send command is 32767 bytes.

4.10.2. USB0.read()

This command receives a string from the first mini USB port USB0.

It has no input parameter.

The return value is a Python string which contains the data received and stored in buffer
at the moment of command execution. The value might be empty if no data is received.

Example:

a = USB0.read()

receives a string from the first mini USB port USB0 handling, assigning the return value to
a.

NOTE:

The buffer available for the USB0.read command is 32767 bytes. The

maximum number of bytes returned by each USB0.read is 8191.

80378ST10106A Rev. 6 Page 60 of 93 2017-02-16

NOTE:

It is up to Python script to keep empty USB0.read buffer.

4.10.3. USB0.sendbyte(byte, <timeout>)

This command sends a byte to the first mini USB port USB0.

The first input parameter byte can be zero or any Python byte to send to the first mini USB
port USB0.

The second input parameter <timeout> is optional and is a Python integer, measured in
1/10s. It represents the maximum time to wait for the byte to be sent to the first mini USB
port USB0 when buffer is full and further data is blocked. The timeout range is (0 ÷
32767).

This method returns immediately after the byte has been sent to the first mini USB port
USB0 or after the timeout period if the byte could not be sent to the first mini USB port
USB0. The return value is a Python integer which is -1 if the timeout period has expired, 1
otherwise.

Example:

b = USB0.sendbyte(0x0d)

sends the byte 0x0d, that corresponds to <CR>, to the first mini USB port USB0 handling,
assigning the return value to b.

4.10.4. USB0.readbyte()

This command receives a byte from the first mini USB port USB0.

It has no input parameter.

The return value is a Python integer which is the byte value received and stored in buffer
at the moment of command execution or is -1 if no data is received. The return value can
also be zero.

Example:

b = USB0.readbyte()

receives a byte from first mini USB port USB0 handling, assigning the return value to b.

4.10.5. USB0.sendavail()

This command queries the number of bytes available to send to USB0 buffer.

It has no input parameter.

The return value is a Python integer which is the number of bytes available to send to
USB0 buffer.

Example:

n = USB0.sendavail()

queries the number of bytes available to send, assigning the return value to n.

80378ST10106A Rev. 6 Page 61 of 93 2017-02-16

5. PYTHON STANDARD FUNCTIONS

In this paragraph you can find detailed description of Python language supported features
in Telit module. Note that all the functions listed below are available in the Python version
2.7.2.

5.1. Technical characteristics

5.1.1. General

All Python statements and almost all Python built-in types and functions are supported.
See in the table below the features not supported:

Available standard built-in modules are:

All others are not supported.

A small collection of standard Python modules written in Python (not built-in) is available.
These .py files are mostly identical to the ones available for PC with minor changes.

complex

unicode

docstring

packages

marshal

imp

_ast

__main__

__builtin__

sys

exceptions

gc

_warnings

_md5

binascii

_sre

_weakref

_symtable

_functools

_socket

time

posix

thread

signal

errno

cStringIO

math

80378ST10106A Rev. 6 Page 62 of 93 2017-02-16

5.2. Python supported features

Refer to the documents available online such as: Python 2.7.2 Tutorial, Python 2.7.2
Reference Manual or Python 2.7.2 Library Reference for details about all the features
listed in the paragraphs below.

5.2.1. Operators, statements, functions

List of supported operators, statements, functions:

 comments #

 line joining \

 operators +, -, *, /, **, %

 operators <<, >>, &, |, ^, ~

 parentheses

 assignment

 comparison operators <, >, ==, <=, >=, !=, <>

 comparison operators in, not in

 print statement

 if, elif, else statement

 indentation

 and, or, not keywords

 for in statement

 while statement

 range() function

 break and continue statements

 pass statement

 functions (without docstrings) (def)

 return statement

 lambda forms

 objects

 object methods

 del statement

 modules

 import statement

 from statement

 exceptions

 try except finally statements

 raise statement

 classes (class)

 class instances

 global statement

 is, is not tests

 exec statement

 iterators

 generators

 yield statement

 with statement

80378ST10106A Rev. 6 Page 63 of 93 2017-02-16

5.2.2. Built-in Functions

The following built-in functions are supported:

abs

all

any

basestring

bin

bool

bytearray

callable

chr

classmethod

cmp

compile

complex (raises exception)

delattr

dict

dir

divmod

enumerate

eval

execfile

filter

float

format

frozenset

getattr

globals

hasattr

hash

help

hex

id

input

int

isinstance

issubclass

iter

len

list

locals

long

map

max

memoryview

min

next

object

oct

open

80378ST10106A Rev. 6 Page 64 of 93 2017-02-16

5.2.3. Built-in Constants

The following built-in constants are supported:

ord

pow

print

property

range

raw_input

reduce

reload

repr

reversed

round

set

setattr

slice

sorted

staticmethod

str

sum

super

tuple

type

vars

xrange

zip

__import__

apply

buffer

coerce

intern

False

True

None

NotImplemented

Ellipsis

__debug__

80378ST10106A Rev. 6 Page 65 of 93 2017-02-16

5.2.4. Truth Value Testing

Truth value testing is supported.

5.2.5. Boolean Operations

The following Boolean operations are supported:

5.2.6. Comparisons

The following comparisons are supported:

5.2.7. Numeric Types: Integer, Long Integer and Floating Point

The following operations are supported with the integer, long integer and floating point
type:

x or y

x and y

not x

<

<=

>

>=

==

!=

is

is not

x + y

x - y

x * y

x / y

x // y

x % y

-x

+x

abs(x)

int(x)

long(x)

float(x)

divmod(x, y)

pow(x, y)

x ** y

round(x[, n])

80378ST10106A Rev. 6 Page 66 of 93 2017-02-16

5.2.8. Numeric Types: Integer, Long Integer

The following bit-string operations and methods are supported with the integer and long
integer type:

5.2.9. Numeric Types: Floating Point

The following methods are supported with the floating point type:

5.2.10. Numeric Types: Complex

Complex numbers are not supported.

5.2.11. Iterator Types

The following methods are supported with the iterator type:

5.2.12. Generator Types

Generator types are supported.

x | y

x ^ y

x & y

x << y

x >> y

~x

bit_length()

as_integer_ratio()

is_integer()

hex()

fromhex(s)

__iter__()

next()

80378ST10106A Rev. 6 Page 67 of 93 2017-02-16

5.2.13. Sequence Types: String, List, Tuple, Bytearray, Buffer and Xrange

The following operations are supported with the string, list, tuple, bytearray, buffer and
xrange types:

Xrange type supports only indexing, iteration and len().

5.2.14. Sequence types: Unicode

Unicode is not supported.

5.2.15. Sequence types: String

The following methods are supported with the string types:

x in s

x not in s

s + t

s * n, n * s

s[i]

s[i:j]

s[i:j:k]

len(s)

min(s)

max(s)

s.index(i)

s.count(i)

capitalize

center

count

decode

encode

endswith

expandtabs

find

format

index

isalnum

isalpha

isdigit

islower

isspace

istitle

isupper

join

ljust

lower

lstrip

80378ST10106A Rev. 6 Page 68 of 93 2017-02-16

5.2.16. Mutable Sequence Types: List and Bytearray

The following additional operations are supported with the lists and bytearray types:

parition

replace

rfind

rindex

rjust

rpartition

rsplit

rstrip

split

splitlines

startswith

strip

swapcase

title

translate

upper

zfill

s[i] = x

s[i:j] = t

del s[i:j]

s[i:j:k] = t

del s[i:j:k]

s.append(x)

s.extend(x)

s.count(x)

s.index(x[, i[, j]])

s.insert(i, x)

s.pop([i])

s.remove(x)

s.reverse()

s.sort([cmp[, key[, reverse]]])

80378ST10106A Rev. 6 Page 69 of 93 2017-02-16

5.2.17. Set Types: Set and Frozenset

The following methods are supported with the set and frozenset types:

The following methods are supported with the set type:

5.2.18. Mapping Types: Dictionary

The following operations are supported with the dictionaries:

len(s)

x in s

x not in s

isdisjoint()

issubset()

set <= other()

set < other()

issuperset

set >= other()

set > other()

union

set | other | …()

intersection

set & other & …()

difference

set - other - …()

symmetric_difference

set ^ other()

copy()

update

set |= other | …()

intersection_update

set &= other & …()

difference_update

set -= other | …()

len(d)

d[key]

d[key] = value

del d[key]

key in d

key not in d

iter(d)

clear()

copy()

fromkeys(seq,[value])

80378ST10106A Rev. 6 Page 70 of 93 2017-02-16

5.2.19. File Objects

The following methods are supported with the file objects:

The following attributes are supported with the file objects:

get(key,[default])

has_key(key)

items()

iteritems()

iterkeys()

itervalues()

keys()

pop(key,[default])

popitem()

setdefault(key,[default])

update([other])

values()

viewitems()

viewkeys()

viewvalues()

close()

flush()

fileno()

isatty()

next()

read([size])

readline([size])

readlines([sizehint])

xreadlines()

seek(offset[, whence])

tell()

write(str)

writelines(seq)

closed

encoding

errors

mode

name

newlines

softspace

80378ST10106A Rev. 6 Page 71 of 93 2017-02-16

NOTE:

 For product versions 12.xx.xxx.

Root directory for Python scripts and in general for text and binary files is:

/sys

and cannot be changed.

Files path name in Python scripts shall contain the root directory.

Path separator is /.

Example:

f = open('/sys/example.txt', 'rb')

From product versions 12.00.xx4 absolute and relative path names have been

added.

Root directory for Python scripts and in general for text and binary files is still:

/sys

and cannot be changed.

Files absolute path name (path beginning with /) in Python scripts shall still

contain the root directory.

Path separator is /.

Example:

f = open('/sys/example.txt', 'rb')

Files relative path name (path not beginning with /) in Python scripts will

automatically refer to the root directory /sys and shall not contain it.

Example:

f = open(‘example.txt’, ‘rb’)

NOTE:

For product versions 13.xx.xxx.

Root directory for Python scripts and in general for text and binary files is

empty and cannot be changed.

Files path name in Python scripts will refer to the empty root directory.

Example:

f = open(‘example.txt’, ‘rb’)

80378ST10106A Rev. 6 Page 72 of 93 2017-02-16

NOTE:

For product versions 18.11.004.

Root directory for Python scripts and in general for text and binary files is

empty and cannot be changed.

Files path name in Python scripts will refer to the empty root directory.

Example:

f = open(‘example.txt’, ‘rb’)

5.2.20. Memoryview Objects

The following methods are supported with the memoryview objects:

tobytes()

tolist()

The following attributes are supported with the memoryview objects:

format

itemsize

shape

ndim

strides

readonly

5.2.21. Module Object

Module objects are supported.

The following attributes are supported:

__dict__

name

5.2.22. Classes and class Instances

Classes and class instances are supported.

80378ST10106A Rev. 6 Page 73 of 93 2017-02-16

5.2.23. Function Objects

Function objects and function call are supported.

5.2.24. Method Objects

Method objects are supported.

5.2.25. Code Objects

Code objects are supported.

5.2.26. Type Objects

Type objects are supported.

5.2.27. Null Object

Null object is supported.

5.2.28. Ellipsis Object

Ellipsis object is supported.

5.2.29. NotImplemented Object

NotImplemented object is supported.

5.2.30. Internal Types: Frame Objects

Frame objects are supported.

5.2.31. Internal Types: Traceback Objects

Traceback objects are supported.

5.2.32. Slice Objects

Slice objects are supported.

80378ST10106A Rev. 6 Page 74 of 93 2017-02-16

5.2.33. Built-in Exceptions

The following built-in exceptions are supported:

BaseException

Exception

StandardError

ArithmeticError

BufferError

LookupError

EnviromentError

AssertionError

AttributeError

EOFError

FloatingPointError

GeneratorExit

IOError

ImportError

IndexError

KeyError

KeyboardInterrupt

MemoryError

NameError

NotImplementedError

OSError

OverflowError

ReferenceError

RuntimeError

StopIteration

SyntaxError

IndentationError

TabError

SystemError

SystemExit

TypeError

UnboundLocalError

UnicodeError

ValueError

ZeroDivisionError

80378ST10106A Rev. 6 Page 75 of 93 2017-02-16

5.2.34. Built-in Modules: marshal

Built-in marshal module is supported with the following functions:

dump

load

dumps

loads

The following constant is supported:

version

5.2.35. Built-in Modules: imp

Built-in imp module is supported with the following functions:

find_module

get_magic

get_suffixes

load_module

new_module

lock_held

acquire_lock

release_lock

The following constants are supported:

PY_SOURCE

PY_COMPILED

C_BUILTIN

PY_FROZEN

5.2.36. Built-in Modules: _ast

Built-in _ast module is supported.

5.2.37. Built-in Modules: _main_

Built-in __main__ module is supported.

80378ST10106A Rev. 6 Page 76 of 93 2017-02-16

5.2.38. Built-in Modules: _builtin_

Built-in __builtin__ module is supported.

5.2.39. Built-in Modules: sys

Built-in sys module is supported with the following functions:

_clear_type_cache

_current_frames

displayhook

exc_info

exc_clear

exepthook

exit

getrefcount

getrecusionlimit

getsizeof

_getframe

setcheckinterval

getcheckinterval

setprofile

getprofile

setrecusionlimit

settrace

gettrace

call_tracing

The following variables are supported:

stdin

stdout

stderr

__stdin__

__stdout__

__stderr__

__diplayhook__

__excepthook__

version

hexversion

subversion

_mercurial

76on’t_write_bytecode

api_version

copyright

platform

executable

prefix

exec_prefix

maxsize

80378ST10106A Rev. 6 Page 77 of 93 2017-02-16

maxint

py3kwarning

float_info

long_onfo

builtin_module_names

byteorder

warnoptions

version_info

flags

float_repr_style

argv

exitfunc

last_type

last_value

last_traceback

modules

meta_path

path

path_hooks

path_importer_cache

tracebacklimit

5.2.40. Built-in Modules: exceptions

Built-in exceptions module is supported.

See Built-in Exceptions paragraph.

5.2.41. Built-in Modules: gc

Built-in gc module is supported with the following functions:

enable

disable

isenabled

collect

set_debug

get_debug

get_objects

set_threshold

get_count

get_threshold

get_referrers

get_referents

is_tracked

80378ST10106A Rev. 6 Page 78 of 93 2017-02-16

The following variable is supported:

garbage

The following constants are supported:

DEBUG_STATS

DEBUG_COLLECTABLE

DEBUG_UNCOLLECTABLE

DEBUG_INSTANCES

DEBUG_OBJECTS

DEBUG_SAVEALL

DEBUG_LEAK

5.2.42. Built-in Modules: _warnings

Built-in _warnings module is supported.

5.2.43. Built-in Modules: _md5

Built-in _md5 module is supported.

It is imported by hashlib.py module.

5.2.44. Built-in Modules: binascii

Built-in binascii module is supported with the following functions:

a2b_uu

b2a_uu

a2b_base64

b2a_base64

a2b_qp

b2a_qp

a2b_hqx

rledecode_hqx

rlecode_hqx

b2a_hqx

crc_hqx

crc32

b2a_hex

hexlify

a2b_hex

unexlify

80378ST10106A Rev. 6 Page 79 of 93 2017-02-16

The following exceptions are supported:

Error

Incomplete

5.2.45. Built-in Modules: _sre

Built-in _sre module is supported.

5.2.46. Built-in Modules: _weakref

Built-in _weakref module is supported.

5.2.47. Built-in Modules: _symtable

Built-in _symtable module is supported.

5.2.48. Built-in Modules: _functools

Built-in _functools module is supported.

It is imported by functools.py.

5.2.49. Built-in Modules: _socket

Built-in _socket module is only supported in product versions 12.xx.xxx, from 13.00.xx5
and from 18.11.004 with the following functions:

socket

gethostbyname

gethostbyname_ex

gethostbyaddr

ntohs

ntohl

htons

htonl

inet_aton

inet_ntoa

getaddrinfo

getnameinfo

getdefualttimeout

setdefualttimeout

80378ST10106A Rev. 6 Page 80 of 93 2017-02-16

The following exceptions are supported:

error

herror

gaierror

timeout

The following constants are supported:

has_ipv6

AF_INET

AF_UNSPEC

INADDR_ANY

INADDR_BROADCAST

IPPROTO_IP

IPPROTO_TCP

IPPROTO_UDP

IP_HDRINCL

IP_TOS

IP_TTL

MSG_DONTWAIT

SHUT_RD

SHUT_RDWR

SHUT_WR

SOCK_STREAM

SOCK_DGRAM

SOCK_RAW

SOL_SOCKET

SO_ACCEPTCONN

SO_BROADCAST

SO_ERR

SO_KEEPALIVE

SO_LINGER

SO_RCVBUF

SO_RCVTIMEO

SO_REUSEADDR

SO_SNDBUF

SO_TYPE

TCP_MAXSEG

TCP_NODELAY

AI_ADDRCONFIG

AI_ALL

AI_CANONNAME

AI_DEFAULT

AI_MASK

AI_NUMERICHOST

AI_PASSIVE

AI_V4MAPPED

AI_V4MAPPED_CFG

EAI_ADDRFAMILY

80378ST10106A Rev. 6 Page 81 of 93 2017-02-16

EAI_AGAIN

EAI_BADFLAGS

EAI_BADHINTS

EAI_FAIL

EAI_FAMILY

EAI_MEMORY

EAI_NODATA

EAI_NONAME

EAI_PROTOCOL

EAI_SERVICE

EAI_SOCKTYPE

EAI_SYSTEM

NI_DGRAM

NI_MAXHOST

NI_MAXSERV

NI_NAMEREQD

NI_NOFQDN

NI_NUMERICHOST

NI_NUMERICSERV

The following non standard constant is supported in product versions 12.xx.xxx and from
13.00.xx5 but it is not supported in version 18.11.004:

SO_CONTEXTID

Socket objects support the following methods:

accept

bind

close

connect

connect_ex

fileno

getpeername

getsockname

getsockopt

listen

recv

recv_into

recvfrom

recvfrom_into

send

sendall

sendto

setblocking

settimeout

gettimeout

setsockopt

shutdown

80378ST10106A Rev. 6 Page 82 of 93 2017-02-16

Socket objects support the following attributes:

family

type

proto

timeout

Built-in _socket module is imported by socket.py.

5.2.50. Built-in Modules: time

Built-in time module is supported with the following functions:

time

clock

sleep

5.2.51. Built-in Modules: posix

Built-in posix module is supported with the following functions:

stat

unlink

remove

rename

open

close

closerange

lseek

read

write

fstat

isatty

strerror

The following variable is supported:

environ

The following exception is supported:

error

80378ST10106A Rev. 6 Page 83 of 93 2017-02-16

The following constants are supported:

F_OK

R_OK

W_OK

X_OK

5.2.52. Built-in Modules: thread

Built-in thread module is supported with the following functions:

start_new_thread

exit

allocate_lock

get_ident

stack_size
(raises exception)

Lock objects support the following methods:

acquire

release

locked

The following exception is supported:

error

Built-in thread module is imported by threading.py.

NOTE:

It is strongly recommended to terminate main thread only after all secondary

threads are terminated.

80378ST10106A Rev. 6 Page 84 of 93 2017-02-16

5.2.53. Built-in Modules: signal

Built-in signal module is supported with the following functions:

signal

getsignal

The following constants are supported:

SIG_DFL

SIG_IGN

The following non standard constants are supported:

SIGMDM

SIGMDM2

5.2.54. Built-in Modules: errno

The following non standard constants are supported:

errocode

5.2.55. Built-in Modules: cStringIO

Built-in cStringIO module is supported with the following function:

StringIO

The following objects are supported:

InputType

OutputType

80378ST10106A Rev. 6 Page 85 of 93 2017-02-16

5.2.56. Built-in Modules: math

Built-in math module is only supported in product versions from 12.00.xx4 and from
13.00.xx5 with the following functions:

Acos

acosh

asin

asinh

atan

atan2

atanh

ceil

copysign

cos

cosh

Degrees

erf

erfc

exp

expm1

fabs

factorial

floor

fmod

frexp

fsum

gamma

hypot

isinf

isnan

ldexp

lgamma

log

log1p

log10

modf

pow

radians

sin

sinh

sqrt

tan

tanh

trunc

80378ST10106A Rev. 6 Page 86 of 93 2017-02-16

The following constants are supported:

e

pi

5.2.57. Library Modules

A small collection of standard Python modules written in Python (not built-in) is available.
These .py files are mostly identical to the ones available for PC with minor changes.

os.py

posixpath.py

stat.py

genericpath.py

socket.py

functools.py

types.py

threading.py

hashlib.py

80378ST10106A Rev. 6 Page 87 of 93 2017-02-16

6. PYTHON NON STANDARD FUNCTIONS

6.1. _socket non standard functions

Only supported in product versions 12.xx.xxx and from 13.00.xx5.

Built-in _socket module is imported by socket.py.

6.1.1. Non standard socket option flag: SO_CONTEXTID

The following non standard constant is supported:

SO_CONTEXTID

It is the socket option flag used to link a socket object to a context identifier after PDP
Context Activation procedure.

NOTE:

PDP Context Activation procedure can be obtained using AT+CGDCONT and

AT#SGACT commands on MDM or MDM2 interface.

All socket objects must be linked to a context identifier.

In the following example

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_CONTEXTID, 1)

a socket object is created and then linked to context identifier number one.

NOTE:

There is a firewall always active on module.

Without firewall proper configuration socket methods might not work as

expected.

Firewall can be configured using AT#FRWL command on MDM or MDM2

interface.

Sockets used by standard functions (e.g. gethostbyname) are silently linked to context
identifier number one.

80378ST10106A Rev. 6 Page 88 of 93 2017-02-16

6.2. signal non standard functions

6.2.1. Non standard signal: SIGMDM

The following non standard constant is supported:

SIGMDM

It is the signal number linked to the event of presence of data in MDM.read buffer.

Example:

signal.signal(signal.SIGMDM, MDMReadHandler)

6.2.2. Non standard signal: SIGMDM2

The following non standard constant is supported:

SIGMDM

It is the signal number linked to the event of presence of data in MDM2.read buffer.

Example:

signal.signal(signal.SIGMDM2, MDM2ReadHandler)

80378ST10106A Rev. 6 Page 89 of 93 2017-02-16

7. PYTHON NOTES

7.1. Memory Limits

In order to prevent memory error, in phase of execution of the script, we advise you to
consider the following limits:

 allocated memory for each variable;

 number of the variables.

The memory available on modules includes:

 2 MB of Non Volatile Memory for the user scripts and data files (12.xx.xxx,
13.xx.xxx and 18.11.004);

 2 MB RAM available for Python engine usage (12.xx.xxx, 13.xx.xxx and
18.11.004).

Some limits of the available NVM that affect file saving procedures and need to be
considered are listed below:

max number of files
open contemporary

16

max length of file
name

16 characters

It is highly recommended not to use the module as a data logger since all flash memories
have limited number of writing and deleting cycles.

Other useful information for NVM usage in application development are:

 writing full size NVM cause a decrees of writing speed; check free space returned
by AT#LSCRIPT and keep about 100KB free space;

 AT#LSCRIPT command might not always show the exact number of bytes that
can be used for NVM due to dynamic memory reorganization process.

7.2. Other Limits

Some other Python limits that should be considered while developing your Python script in
order to find an appropriate solution are listed below:

 Python scripts should not interfere with GSM/GPRS/WCDMA/CDMA-1xRTT
standard operations, for this reason Python scripts run at lower priority;

 GPIO polling frequency from Python scripts might be slower than expected.

80378ST10106A Rev. 6 Page 90 of 93 2017-02-16

8. PYTHON SCRIPT EMULATION ON PC

8.1. Executing the Python script on PC

The steps required to have a script executing by the Python engine on PC in a similar way
as on the Telit module are:

 install Python on PC;

 install optional serial package on PC;

 copy on PC Python modules that emulates custom built-in modules (MDM, MDM2,
SER, GPIO, GPS);

 run the Python script.

8.1.1. Install Python

Download Python 2.7.2 installation from

http://www.python.org/

http://www.python.org/download/releases/2.7.2/

and install it.

8.1.2. Install optional serial package

Download PythonWin installation related to Python 2.7 from

http://sourceforge.net/projects/pywin32/files/pywin32/

and install it.

Download pyserial package installation from

http://sourceforge.net/projects/pyserial/files/pyserial/

and install it.

8.1.3. Copy Python modules

A collection of Python modules written in Python (not built-in) that emulates custom built-in
modules is available.

MDM.py

MDM2.py

SER.py

SER2.py

GPIO.py

GPS.py

USB0.py

Copy these files on PC.

These modules make the difference between running the script on PC and on module.

http://www.python.org/
http://www.python.org/download/releases/2.7.2/
http://sourceforge.net/projects/pywin32/files/pywin32/
http://sourceforge.net/projects/pyserial/files/pyserial/

80378ST10106A Rev. 6 Page 91 of 93 2017-02-16

8.1.4. Run the Python script

Run the Python script on PC.

Main differences between executing the Python script on PC compared to module are:

 script speed execution;

 different behaviour between emulating modules and custom built-in modules.

80378ST10106A Rev. 6 Page 92 of 93 2017-02-16

DOCUMENT HISTORY

Revision Date Changes

0 2012-02-27 First issue

1 2015-10-29 New title and changes for GE910 product family

2 2013-05-29 Implementation of new functionalities on
UE/HE910 series (power saving, watchdog, IIC,
SPI, SER2, SER flow control, math module,
absolute/relative path)

3 2013-07-26 Porting of the new functionalities on GE910
product family

4 2014-05-07 Implementation of new functionalities on
UE/HE910 and GE910 series (USB0)

Changes for CE910 product family

5 2015-03-03 Updated GPS section

Updated Applicability Table

6 2017-02-16 2017 Template applied

 [0
1
.2

0
1

7
]

Mod. 0809 2017-01 Rev.8

