

1VV0301722 Rev. 1 Page 1 of 30 01/02/2021

-

[0

4.
20

21
]

FN980m Appzone Linux SDK

 User Guide
1VV0301722 Rev. 1 – 2021-05-07

1VV0301722 Rev. 1 Page 2 of 30 01/02/2021

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

NOTICES LIST

While reasonable efforts have been made to assure the accuracy of this document, Telit
assumes no liability resulting from any inaccuracies or omissions in this document, or from
use of the information obtained herein. The information in this document has been carefully
checked and is believed to be reliable. However, no responsibility is assumed for
inaccuracies or omissions. Telit reserves the right to make changes to any products
described herein and reserves the right to revise this document and to make changes from
time to time in content hereof with no obligation to notify any person of revisions or changes.
Telit does not assume any liability arising out of the application or use of any product,
software, or circuit described herein; neither does it convey license under its patent rights
or the rights of others.
It is possible that this publication may contain references to, or information about Telit
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that Telit
intends to announce such Telit products, programming, or services in your country.

COPYRIGHTS

This instruction manual and the Telit products described in this instruction manual may be,
include or describe copyrighted Telit material, such as computer programs stored in
semiconductor memories or other media. Laws in the Italy and other countries preserve for
Telit and its licensors certain exclusive rights for copyrighted material, including the
exclusive right to copy, reproduce in any form, distribute and make derivative works of the
copyrighted material. Accordingly, any copyrighted material of Telit and its licensors
contained herein or in the Telit products described in this instruction manual may not be
copied, reproduced, distributed, merged or modified in any manner without the express
written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed
to grant either directly or by implication, estoppel, or otherwise, any license under the
copyrights, patents or patent applications of Telit, as arises by operation of law in the sale
of a product.

COMPUTER SOFTWARE COPYRIGHTS
The Telit and 3rd Party supplied Software (SW) products described in this instruction
manual may include copyrighted Telit and other 3rd Party supplied computer programs
stored in semiconductor memories or other media. Laws in the Italy and other countries
preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted
computer programs, including the exclusive right to copy or reproduce in any form the
copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party
supplied SW computer programs contained in the Telit products described in this instruction
manual may not be copied (reverse engineered) or reproduced in any manner without the
express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase
of Telit products shall not be deemed to grant either directly or by implication, estoppel, or
otherwise, any license under the copyrights, patents or patent applications of Telit or other
3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that
arises by operation of law in the sale of a product.

1VV0301722 Rev. 1 Page 3 of 30 01/02/2021

USAGE AND DISCLOSURE RESTRICTIONS

I. License Agreements

The software described in this document is the property of Telit and its licensors. It is
furnished by express license agreement only and may be used only in accordance with the
terms of such an agreement.

II. Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is
prohibited by law. No part of the software or documentation may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, without prior written permission of Telit

III. High Risk Materials

Components, units, or third-party products used in the product described herein are NOT
fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control
equipment in the following hazardous environments requiring fail-safe controls: the
operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air
Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its
supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High
Risk Activities.

IV. Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or
service names are the property of their respective owners.

V. Third Party Rights

The software may include Third Party Right software. In this case you agree to comply with
all terms and conditions imposed on you in respect of such separate software. In addition
to Third Party Terms, the disclaimer of warranty and limitation of liability provisions in this
License shall apply to the Third Party Right software.
TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED
FROM ANY THIRD PARTIES REGARDING ANY SEPARATE FILES, ANY THIRD PARTY
MATERIALS INCLUDED IN THE SOFTWARE, ANY THIRD PARTY MATERIALS FROM
WHICH THE SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODE”), AND THE
USE OF ANY OR ALL THE OTHER CODE IN CONNECTION WITH THE SOFTWARE,
INCLUDING (WITHOUT LIMITATION) ANY WARRANTIES OF SATISFACTORY
QUALITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO THIRD PARTY LICENSORS OF OTHER CODE SHALL HAVE ANY LIABILITY FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED
AND WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY,
ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODE
OR THE EXERCISE OF ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS
LICENSE AND THE LEGAL TERMS APPLICABLE TO ANY SEPARATE FILES, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

1VV0301722 Rev. 1 Page 4 of 30 01/02/2021

APPLICABILITY TABLE

PRODUCTS

 SW Versions Modules

FN980M SERIES 38.02.xx1 5G

1VV0301722 Rev. 1 Page 5 of 30 01/02/2021

CONTENTS

NOTICES LIST ... 2

COPYRIGHTS .. 2

COMPUTER SOFTWARE COPYRIGHTS .. 2

USAGE AND DISCLOSURE RESTRICTIONS ... 3

APPLICABILITY TABLE .. 4

1. INTRODUCTION .. 7
 Scope ... 7

 Audience... 7
 Contact Information, Support ... 7
 Text Conventions ... 8
 Related Documents .. 9

2. REQUIREMENTS .. 10

3. STAND ALONE SDK... 11
 Initial Configuration .. 11

3.1.1. Install ADB .. 11
 SDK Overview and Content ... 11

 Installing the SDK ... 11
 Setting up the SDK ... 12
 Creating and Building Applications .. 14

3.5.1. Make File Based Applications .. 14

 Downloading and running applications .. 15
 Run on bootup .. 16

4. INSTRUCTIONS FOR USING THE MCM API'S 17
 Initialize the MCM client ... 17

 Create a Request Object with Parameters 17
 Create a Response Object and Allocate Memory 17
 Make a Call .. 18
 Define an Asynchronous Callback Function 18

 Define an Indication Callback Function (Optional) 19
 Release a Client Handle .. 19
 Compile the Code .. 19

5. TEST EXAMPLE USING MCM API’S ... 20

 ATCOP Usage source.. 20

1VV0301722 Rev. 1 Page 6 of 30 01/02/2021

5.1.1. Header Files and Definitions .. 20
5.1.2. Release the handler ... 22

5.1.3. Asynchronous callback .. 22
5.1.4. AT Test Function .. 23
5.1.5. Main Function ... 24

 Compilation .. 26

6. GLOSSARY AND ACRONYMS .. 28

7. DOCUMENT HISTORY ... 29

1VV0301722 Rev. 1 Page 7 of 30 01/02/2021

1. INTRODUCTION
 Scope

This document describes the Appzone Linux API, also referred to as the Mobile Connection
Manager (MCM) API. The MCM API allows a subset of services provided by Qualcomm’s
MDM chipsets to be accessible to Linux® applications.
Telit also add proprietary APIs for features which are not provided by Qualcomm’s MCM..

 Audience
This document is intended for software developers who will be using the MCM API.
This document provides the public interfaces necessary to use the features provided by the
MCM API.
A functional overview and information on leveraging the interface functionality are also
provided. This document assumes that the user is familiar with Linux programming.

 Contact Information, Support
For general contact, technical support services, technical questions and report
documentation errors contact Telit Technical Support at:

• TS-EMEA@telit.com
• TS-AMERICAS@telit.com
• TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/support

For detailed information about where you can buy the Telit modules or for recommendations

on accessories and components visit:

http://www.telit.com

Our aim is to make this guide as helpful as possible. Keep us informed of your comments

and suggestions for improvements.

Telit appreciates feedback from the users of our information.

mailto:TS-EMEA@telit.com
mailto:TS-AMERICAS@telit.com
mailto:TS-APAC@telit.com
http://www.telit.com/support
http://www.telit.com/

1VV0301722 Rev. 1 Page 8 of 30 01/02/2021

 Text Conventions

Danger – This information MUST be followed, or catastrophic equipment

failure or bodily injury may occur.

Caution or Warning – Alerts the user to important points about integrating the

module, if these points are not followed, the module and end user equipment

may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful

when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1VV0301722 Rev. 1 Page 9 of 30 01/02/2021

 Related Documents
1. 80624ST10996A_FN980m_AT_command_Reference_Guide_Preliminary
2. 80624ST11005A_FN980m_QMI_Command_Reference_Guide_Preliminary_Draft
3. 1VV0301615_FN980m_SW_Guide_Preliminary

1VV0301722 Rev. 1 Page 10 of 30 01/02/2021

2. REQUIREMENTS
The requirements needed in order to work with the Appzone Linux environment are as
follows:

• Ubuntu 14.04 OS
Ubuntu 14.04 is a Linux-based computer operating system. Ubuntu will be used for
developing the Appzone Linux Applications

• GCC 4.6.3 compiler
The GNU Compiler Collection (GCC) is a compiler system produced by the GNU Project.
The GCC compiler will be used for compiling the connection manager applications.
* Note: GCC 4.6.3 is built in the Ubuntu 12.04 OS.

• GDB
The GNU Debugger (GDB) is the standard debugger for the GNU operating system. The
GDB debugger will be used for debugging the connection manager applications.

• ADB
The Android Debug Bridge (ADB) is a command-line tool to assist in debugging Android-
powered devices. The ADB will be used for loading and running the Appzone Linux
applications into the Fn980m module.

1VV0301722 Rev. 1 Page 11 of 30 01/02/2021

3. STAND ALONE SDK
 Initial Configuration

3.1.1. Install ADB

To install ADB on your system, use the following commands:

• sudo add-apt-repository ppa:phablet-team/tools && sudo apt-get update

• sudo apt-get install android-tools-adb android-tools-fastboot

• Stop the adb server using the command:

adb kill-server

• Start the adb server using the command:

adb start-server

To confirm that ADB was installed on your computer, connect your SDX55 module to the computer
and use the following command:

• adb devices

Example:

Make sure that your ADB device is recognized by the Linux system.

 SDK Overview and Content
The Stand-alone SDK does not include a complete application development environment.
It includes only the core SDK, which you can access from a command line interface (CLI)
or with a plugin of your favorite IDE (if available).

The Stand-alone SDK consists of the following:

• Toolchain: Contains the set of tools that compiles source code into executables
that can run on target device. This also includes a compiler, a linker, and run-time
libraries.

• Sysroot: Contains header files and libraries required for build.
• Setup script: az_sdk_env_setup.sh file when executed, sets the development

environment for the target device.

 Installing the SDK
The first thing to do for installing the SDK is to unzip “<SDK version>_AZSDK .tar.gz”
stand alone package in the specific directory on your host development machine.
Follow below commands to unzip the SDK.

user@host:~$ mkdir AZ_SDK
user@host:~$ cd AZ_SDK
user@host:~/AZ_SDK$ tar –zxf ../FN980M_38.02.XXX_AZSDK.tar.gzgz
user@host:~/AZ_SDK$ ls

1VV0301722 Rev. 1 Page 12 of 30 01/02/2021

After unzipping, the following files will be present in the directory as explained above.

AZ SDK version must match with target SW version. Because sysroot image

contain libraries, headers and symbols specific to target SW version. Please,

refer to APPLICABILITY TABLE for the available version information of AZ

SDK and target SW version.

 Setting up the SDK
After unzipping the SDK, The SDK environment setup script should be run. The set up
script (az_sdk_env_setup.sh) resides in the unzipped directory.
Setup the SDK with Source command:

When you run the setup script, the following environment variables are defined:

ENVIRONMENT
VARIABLES

DESCRIPTION

AZ_SDK_SYSROOT The path to the sysroot contain target-specific libraries,
header files

AZ_SDK_TOOLCHAIN The path to the cross-development toolchain

AZ_M2MB_LIBS The list to M2MB API library name

user@host:~/AZ_SDK$ source az_sdk_env_setup.sh
--
AZ SDK ENVIORNMENT
AZ SDK VERSION : 38.00.X00-B025
AZ SDK PATH : /home/user/AZ_SDK
AZ SDK SYSROOT : /home/user/AZ_SDK/sysroot
AZ SDK TOOLCHAIN : /home/user/AZ_SDK/toolchain
--

1VV0301722 Rev. 1 Page 13 of 30 01/02/2021

CC The command and arguments to run the C compiler

CXX The command and arguments to run the C++ compiler

CPP The command and arguments to run the C preprocessor

AS The command and arguments to run the assembler

LD The command and arguments to run the linker

GDB The command and arguments to run the GNU Debugger

STRIP The command and arguments to run ‘strip’, which strips
symbols

RANLIB The command and arguments to run ‘ranlib’

OBJCOPY The command and arguments to run ‘objcopy’

OBJDUMP The command and arguments to run ‘objdump’

AR The command and arguments to run ‘ar’

M4 GNU M4 is an implementation of the traditional Unix macro
processor

NM The command and arguments to run ‘nm’

TARGET_PREFIX The toolchain binary prefix for the target tools

CROSS_COMPILE The toolchain binary prefix for the target tools

CONFIGURE_FLAGS The arguments for GNU configure

CFLAGS Suggested C flags

CXXFLAGS Suggested C++ flags

LDFLAGS Suggested linker flags when you use CC to link

CPPFLAGS Suggested preprocessor flags

1VV0301722 Rev. 1 Page 14 of 30 01/02/2021

ARCH Architecture

 Creating and Building Applications
Now that the SDK environment is setup, next step is to develop application on your host
machine.

3.5.1. Make File Based Applications
This section shows a simple application development using makefile for demonstration
purposes.
Step 1: Prepare the following application files for the application:

Step 2: Write the helloworld application in main.c as below:

Step 3: For Make-file based application, the cross-toolchain environment variables
established by running az_sdk_env script are subject to general make rules.Prepare the
Make File as below:

user@host:~/CA$ ls
main.c Makefile

#include <stdio.h>
int main()
{
 printf("Hello, world!\n");
 return 0;
}

CFLAGS = -Wall -g
OBJECTS = main.o
TARGET = helloworld
all : $(TARGET)
$(TARGET) : $(OBJECTS)
 $(CC) $(LDFLAGS) -o $@ $^
clean :
 rm -f $(OBJECTS) $(TARGET)

1VV0301722 Rev. 1 Page 15 of 30 01/02/2021

Step 4: Build the application as below:

 Downloading and running applications

Step 1: First of all, the user need to check if the ADB is enabled. ADB setting can be
done using the modem console.

Step 2: Load the application to the target device using ADB.

Step 3: Run the application as below:

user@host:~/CA$ ls
main.c Makefile
user@host:~/CA$ make
arm-oe-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -
mfloat-abi=hard --sysroot=/home/user/AZ_SDK/sysroot -Wall -Werror -
Wextra -g -c -o main.o main.c
arm-oe-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -
mfloat-abi=hard --sysroot=/home/user/AZ_SDK/sysroot -Wl,--hash-
style=gnu -Wl,--as-needed -o helloworld main.o
user@host:~/CA$ ls
helloworld main.c main.o Makefile

at#enadb=1
OK

C:\Users\user>adb push Z:\CA\helloworld /data
Z:\CA\helloworld: 1 file pushed, 0 skipped. 1.4 MB/s (10268 bytes
in 0.007s)

asdxprairie login: root
Password: oelinux123
root@sdxprairie:~# cd /data/
root@sdxprairie:/data# ls helloworld
helloworld
root@sdxprairie:/data# chmod 755 helloworld
root@sdxprairie:/data# ./helloworld
Hello, world!
root@sdxprairie:/data

1VV0301722 Rev. 1 Page 16 of 30 01/02/2021

 Run on bootup
If the user wants to run the application whenever the target device is bootup, then the
application can be registered to the startup script as below:

root@sdxprairie:~# mkdir /cache/oem_initscript
root@sdxprairie:~# vi /cache/oem_initscript/oemhp_start.sh
root@sdxprairie:~# cat /cache/oem_initscript/oemhp_start.sh
#!/bin/bash
/data/helloworld

1VV0301722 Rev. 1 Page 17 of 30 01/02/2021

4. INSTRUCTIONS FOR USING THE MCM API'S

The MCM API is a callback-oriented API for accessing and manipulating communications for the
device. The main method of accessing any functionality provided by the MCM framework is to
create a request message structure, fill it with relevant parameters, and then pass it to the MCM
framework via a synchronous or asynchronous call, which will then return a response message
corresponding to the request. In addition, indication events can be received corresponding to
system messages or changes.

The following sections provide the steps for development using the IoE MCM framework.

 Initialize the MCM client

The MCM client must be initialized with the following code before any other calls are sent:

mcm_client_handle_type hndl;
mcm_client_init (&hndl, ind_cb,
async_cb);

Where:
ind_cb = Indication callback
async_cb = Asynchronous
callback

The function returns 0 if successful.

 Create a Request Object with Parameters

Use the code below to create a request object and fill it with relevant parameter. For example, to
create a voice call request object:

mcm_voice_dial_req_msg_v01req;

The following parameters are optional:

req.address_valid=1;
strlcpy(req.address,phone_number, MCM_MAX_PHONE_NUMBER_V01 + 1);
req.call_type_valid = 1;
req.call_type = MCM_VOICE_CALL_TYPE_VOICE_V01;
req.uusdata_valid = 0;

 Create a Response Object and Allocate Memory

Use the code below to create a response object and dynamically allocate memory to the object.
For example, to create a voice call request object:

mcm_voice_dial_req_msg_v01req;

rsp = malloc(sizeof(mcm_voice_dial_resp_msg_v01));
memset(rsp, 0,
sizeof(mcm_voice_dial_resp_msg_v01));

1VV0301722 Rev. 1 Page 18 of 30 01/02/2021

NOTE:

The release of memory allocated with malloc function at this stage is

the user responsibility.

 Make a Call

This API supports both synchronous and asynchronous calls. For example, to dial an
asynchronous voice call:

MCM_CLIENT_EXECUTE_COMMAND_ASYNC(hndl, MCM_VOICE_DIAL_REQ_V01, &req,
rsp, async_cb, &token_id);

To dial a synchronous call:

MCM_CLIENT_EXECUTE_COMMAND_SYNC(hndl, MCM_VOICE_DIAL_REQ_V01, &req,
rsp);

Where:
hndl = MCM client handle
MCM_VOICE_DIAL_REQ_V01 = Message ID for the request to identify the different
requests req = Request object
rsp = Response object async_cb =
Asynchronous callback function
token_id = Token ID returned from the request; used to verify whether a future callback is for
the same async request

 Define an Asynchronous Callback Function

This function is used to receive a response from the async call made in Section 6.4. For
example, to define a callback function for dialing a voice call:

void async_cb(mcm_client_handle_type hndl, uint32_t msg_id,

void *resp_c_struct, uint32_t resp_len, void
 *token_id)

{
switch(msg_id)

{
case MCM_VOICE_DIAL_RESP_V01:
rsp =
(mcm_voice_dial_resp_msg_v01*)resp_c_struct;
if(!rsp->call_id_valid)
{
printf("Invalid Valid Call ID");

}
// Can add more error checks here depending on the structure of the
// response

Where:

1VV0301722 Rev. 1 Page 19 of 30 01/02/2021

msg_id = Message ID for the response to identify different response
types resp_c_struct = Response object returned by the framework
token_id = Toden ID returned from the callback; this is the same value as the value that was
returned from the prior async request

 Define an Indication Callback Function (Optional)

This type of callback generally provides information concerning a change of state in the system:

void ind_cb(mcm_client_handle_type hndl,uint32_t msg_id,
void *ind_c_struct,uint32_t
 ind_len);

To register for these types of callbacks, an event register call must be used. For example:

MCM_CLIENT_EXECUTE_COMMAND_SYNC(hndl,
MCM_VOICE_EVENT_REGISTER_REQ_V01,

&ind_req, &ind_rsp);

 Release a Client Handle

Use the following code to release the client handle:

mcm_client_release(hndl);

The function returns 0 if successful.

 Compile the Code

Use the following steps to compile the code:

1. Obtain the header files in the API folder and the mcm_client_stubs.c in the stubs folder.

2. Create a shared library (libmcm.so) using the mcm_client_stubs.c file. For example:

arm-none-linux-gnueabi-gcc -I ../api -shared -Wl,-
soname,libmcm.so.0 -o libmcm.so -fPIC mcm_client_stubs.c Where: arm-
none-linux-gnueabi-gcc = A cross compiler api = A folder containing all the
MCM header files

3. Link to the above shared library while generating the executable program for the C code. For
example:

arm-none-linux-gnueabi-gcc sample_code.c -I ../api -L. -lmcm -o
sample_code Where: sample_code.c = C code with MCM-related functions lmcm = Shared
library libmcm.so sample_code = Name of the executable that was generated

1VV0301722 Rev. 1 Page 20 of 30 01/02/2021

5. TEST EXAMPLE USING MCM API’S

In this section a simple example is described which will explain how to use MCM API’s which is
almost a simple practical implementation of section 6.

 ATCOP Usage source

5.1.1. Header Files and Definitions

#ifdef USE_GLIB
#include <glib.h>
#define strlcpy g_strlcpy
#endif

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/shm.h>
#include <semaphore.h>

#include "mcm_client.h"
#include "mcm_common_v01.h"
#include "mcm_atcop_v01.h"

#define ATCOP 1
#define DATA 2
#define DM 3
#define LOC 4

#define MOBILEAP 5
#define NW 6
#define SIM 7
#define SMS 8

#define VOICE 9
#define EXIT 0

mcm_client_handle_type hndl;

1VV0301722 Rev. 1 Page 21 of 30 01/02/2021

/*DM*/

mcm_dm_get_radio_mode_req_msg_v01 mode_req;
mcm_dm_get_radio_mode_resp_msg_v01* mode_rsp;

/*ATCOP*/

mcm_atcop_req_msg_v01 at_req;
mcm_atcop_resp_msg_v01* at_rsp;

/*VOICE*/

mcm_voice_dial_req_msg_v01 dial_req;
mcm_voice_dial_resp_msg_v01* dial_rsp;

/* Is the call active? */

int callActive = FALSE;
uint32_t call_id;

/*SIM*/

mcm_sim_get_card_status_req_msg_v01 sim_req;
mcm_sim_get_card_status_resp_msg_v01* sim_rsp;

/*NW*/

mcm_nw_get_config_resp_msg_v01 config_req;

/*SMS*/
mcm_sms_get_msg_config_req_msg_v01 sms_req;

mcm_sms_get_msg_config_resp_msg_v01* sms_rsp;

int token_id = 0;
sem_t sem_wait_for_callback;

1VV0301722 Rev. 1 Page 22 of 30 01/02/2021

5.1.2. Release the handler

/* Release the handler */

void tear_down()
{
 int release_result=mcm_client_release(hndl);
 if(release_result!=0)

 {
 printf ("releasing client handle\n");
 }
 printf("MCM client hndl released\n");

}

5.1.3. Asynchronous callback

/*asynchronous callback function*/
void async_cb(
 mcm_client_handle_type hndl,
 uint32_t msg_id,

 void *resp_c_struct,
 uint32_t resp_len,
 void *token_id)
{

 printf("==== ASYNC CALL BACK ENTER ====\n");
 switch(msg_id)
 {
 case MCM_VOICE_DIAL_RESP_V01:

 dial_rsp = (mcm_voice_dial_resp_msg_v01*)resp_c_struct;

 if(dial_rsp->response.result != MCM_RESULT_SUCCESS_V01)
 {

 printf("Voice call failed.Error code: %d\n", dial_rsp->response.error);
 callActive = FALSE;
 }
 if(dial_rsp->call_id_valid)

 {
 printf("Valid Call ID = %d \n", dial_rsp->call_id);
 call_id = dial_rsp->call_id;

1VV0301722 Rev. 1 Page 23 of 30 01/02/2021

 callActive = TRUE;
 }

 else
 {
 printf("Invalid Call ID = %d \n", dial_rsp->call_id);
 printf("Call ID Validity = %d \n", dial_rsp->call_id_valid);

 callActive = FALSE;
 }
 break;

 default:
 printf("**** Unknown callback response **** \n");
 break;
 }

}

5.1.4. AT Test Function

This function is the function responsible for executing the AT command.

void AT_test()
{
 char atcom[MCM_ATCOP_MAX_REQ_MSG_SIZE_V01];

 printf("input AT command : ");
 scanf("%s",&atcom);

 strcpy(at_req.cmd_req, atcom);

 at_req.cmd_len=sizeof(at_req.cmd_req);

 at_rsp = malloc(sizeof(mcm_atcop_resp_msg_v01));
 if(at_rsp!=0)

 {
 memset(at_rsp, 0, sizeof(mcm_atcop_resp_msg_v01));
 }

 printf("\n**** AT COMMAND Test **** \n");
 MCM_CLIENT_EXECUTE_COMMAND_SYNC(hndl, MCM_ATCOP_REQ_V01,
&at_req, at_rsp);

1VV0301722 Rev. 1 Page 24 of 30 01/02/2021

 if(at_rsp->resp.result != MCM_RESULT_SUCCESS_V01)

 printf("AT command response FAILED\n");

 else
 {

 printf("Result %s\n",at_rsp->cmd_resp);
 }

 free(at_rsp);

}

5.1.5. Main Function

int main()
{

 int input;

 printf("Telit IoE MCM TEST!!!\n");
 memset(&hndl, 0, sizeof(hndl));
 int init_result = mcm_client_init(&hndl, ind_cb, async_cb);

 printf("MCM_client_init result == %d\n",init_result);

 if(init_result == MCM_SUCCESS_V01 || init_result ==
MCM_SUCCESS_CONDITIONAL_SUCCESS_V01) /* mcm_client_init returns 0 on
success */
 { // MCM CLIENT is SUCCESSFULLY INITIALIZED HERE
 while(1)

 {
 printf("\nTest IoE Manager\n");
 //printf("0 : EXIT\n1 : ATCOP\n2 : DATA\n3 : DM\n4 : LOC\n5 : MOBILEAP\n6 :
NW\n7 : SIM\n8 : SMS\n9 : VOICE\n");

 printf("0 : EXIT\n1 : ATCOP\n3 : DM\n7 : SIM\n8 : SMS\n9 : VOICE\n");
 printf(" Input number : ");
 scanf("%d",&input);
 switch(input)

1VV0301722 Rev. 1 Page 25 of 30 01/02/2021

 {
 case ATCOP:

 AT_test(); // AT test function is called here
 break;

 case DATA:

 break;

 case DM:
 break;

 case LOC:
 break;

 case MOBILEAP:
 break;

 case NW:

 break;

 case SIM:
 break;

 case SMS:
 break;

 case VOICE:
 break;

 case EXIT:

 printf("Done!!!\n");
 tear_down();
 return 0;

 default:
 printf("please input Right Value!!!\n");
 tear_down();

1VV0301722 Rev. 1 Page 26 of 30 01/02/2021

 return 0;
 }

 }

 }
 else

 {
 printf("MCM client init failed\n");
 }

 return 0;
}

 Compilation
Step 1:
Step 1 is setting up the SDK which is same as section 5.4.

Step 2:
Make your application directory inside AZ_SDK. Make a C source file as explained in
section 7.1

Step 3:
Make a shared library using mcm_client_stubs.c.
this source is available in API. (Refer to section 6.8)

arm-oe-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard –
sysroot= /home/TMT/user/Repositories/SDX55/AZ_SDK/sysroot -shared -Wl,-
soname,libmcm.so.0 -o libmcm.so -fPIC mcm_client_stubs.c

where:
arm-oe-linux-gnueabi-gcc = cross compiler
--sysroot=/home/TMT/user/Repositories/SDX55/AZ_SDK/sysroot = API path where all
the MCM api’s are present
mcm_client_stubs.c = the source need to present in same folder while using which the
shared library is created

libmcm.so will be created
Step 4:
Compile the source file created in step 2 using shared library created in step 3.

1VV0301722 Rev. 1 Page 27 of 30 01/02/2021

arm-oe-linux-gnueabi-gcc source-name.c -march=armv7-a -mthumb -mfpu=neon -mfloat-
abi=hard –sysroot=/home/TMT/user/Repositories/SDX55/AZ_SDK/sysroot -L. -lmcm -o
source-name
where:
source-name.c = application source file
-lmcm = shared library

1VV0301722 Rev. 1 Page 28 of 30 01/02/2021

6. GLOSSARY AND ACRONYMS

 Description

API Application programming interface

ADB Android Debug Bridge

API Application programming interface

APN Access Point Name – it is the name of a gateway between a GSM,
GPRS, 3G or 4G mobile network and another computer network
(usually the Internet)

GCC Gnu Compiler Collection

GDB Gnu Debugger

JSON JavaScript Object Notation. It is a text-based data interchange format
designed for transmitting and storing structured data, both human
readable and machine readable.

LwM2M Lightweight Machine To Machine – IoT Application Protocol designed
for bidirectional communication between devices and a central server

M2MB Machine to Machine optimized Telit APIs

MCM Mobile Connection Manager

PC Personal Computer

PDP Packed Data Protocol – Often used in conjunction with “context” to
define a specific data structure that allows the device to communicate
using the Internet Protocol

SDK Software Development Kit

USB Universal Serial Bus

URC Unsolicited Result Code – it is the message returned by the mobile
equipment (the modem) that is not a direct result of an AT command. It
could be a soft interrupt or the response of an AT asynchronous
command

XML eXtensible Markup File. It is a markup language that defines a set of
rules for encoding documents in a format that is both human-readable
and machine-readable

1VV0301722 Rev. 1 Page 29 of 30 01/02/2021

7. DOCUMENT HISTORY

Revision Date Changes

1 2021-05-07 Initial Revision

 [0
1.

20
17

]

Mod. 0809 2017-01 Rev.8

	Notices List
	Copyrights
	Computer Software Copyrights
	Usage and Disclosure Restrictions
	APPLICABILITY TABLE
	1. Introduction
	1.1. Scope
	1.2. Audience
	1.3. Contact Information, Support
	1.4. Text Conventions
	1.5. Related Documents

	2. Requirements
	3. Stand aLONE SDK
	3.1. Initial Configuration
	3.1.1. Install ADB

	3.2. SDK Overview and Content
	3.3. Installing the SDK
	3.4. Setting up the SDK
	3.5. Creating and Building Applications
	3.5.1. Make File Based Applications

	3.6. Downloading and running applications
	3.7. Run on bootup

	4. Instructions for Using the MCM API'S
	4.1. Initialize the MCM client
	4.2. Create a Request Object with Parameters
	4.3. Create a Response Object and Allocate Memory
	4.4. Make a Call
	4.5. Define an Asynchronous Callback Function
	4.6. Define an Indication Callback Function (Optional)
	4.7. Release a Client Handle
	4.8. Compile the Code

	5. TEST Example Using MCM API’s
	5.1. ATCOP Usage source
	5.1.1. Header Files and Definitions
	5.1.2. Release the handler
	5.1.3. Asynchronous callback
	5.1.4. AT Test Function
	5.1.5. Main Function

	5.2. Compilation

	6. Glossary and Acronyms
	7. Document History

